Цитологическая основа генетической идентичности соматических клеток. Цитологические основы наследственности

  • 20.09.2019

Введение

1 За неполных 100 лет после переоткрытия законов Г. Менделя генетика прошла путь от философского понимания законов наследственности и изменчивости через экспериментальное накопление фактов формальной генетики к молекулярно-биологическому пониманию сущности гена, его структуры и функции. От теоретических построений о гене как абстрактной единице наследственности - к пониманию его материальной природы как фрагмента молекулы ДНК, кодирующего аминокислотную структуру белка, до клонирования индивидуальных генов, создания подробных генетических карт человека, животных, идентификации генов, мутации которых сопряжены с тяжелыми наследственными недугами, разработки методов биотехнологии и генной инженерии , позволяющих направленно получать организмы с заданными наследственными признаками, а также проводить направленную коррекцию мутантных генов человека, то есть генотерапию наследственных заболеваний.

Генетика - это наука, изучающая основные закономерности наследственности и изменчивости. Она раскрывает сущность того, каким образом каждая живая форма воспроизводит себя в следующем поколении, и как в этих условиях возникают наследственные изменения, которые передаются потомкам, участвуя в процессах эволюции и селекции. Современная генетика является сплавом классической и молекулярной генетики.

Наследственность - это свойство организма передавать свои признаки и особенности потомству. Сохраняются и передаются не сами признаки, а генетическая информация о признаках, закодированная в ДНК. Молекулы ДНК с большей точностью реплицируются (удваиваются) и передаются родителями потомству, сменяя миллионы поколений.

Изменчивость - это свойство (способность) живых организмов отличаться от своих родителей и приобретать новые признаки и свойства.

2 Генетика человека изучает закономерности хранения, передачи и реализации генетической информации (гены, строение, функции), механизм возникновения закономерности передачи изменений, их проявление и последствия. Редупликация молекул ДНК является основой наследственности. Наследственность объясняет сохранение видов во времени и пространстве. Кроме этого молекуле ДНК присуща способность к рекомбинации, в процессе которой изменяется последовательность нуклеотидов в генах, и в результате чего образуются новые комбинации генов и соответствующих признаков. Происходят изменения генетической информации и под влиянием факторов окружающей среды. Многочисленные сигналы внешней и внутренней среды поступают к генам, регулируют их активность, осуществляя ответ организма на воздействия сигналов. Возникновение новых признаков у потомства обеспечивает адаптацию особей к меняющимся условиям жизни, передачу этих признаков потомству т.е. развитие вида во времени, его эволюцию.

3 Медицинская генетика изучает роль наследственности и изменчивости с точки зрения патологии человека, закономерности передачи от поколения поколению наследственных болезней, а также разрабатывает методы диагностики, лечения и профилактики наследственной патологии, в том числе и болезней с наследственной предрасположенностью, объединяя, таким образом, медицинские и генетические открытия и достижения для борьбы с болезнями. Медицинская генетика, являясь важнейшей частью теоретической медицины, выясняет значение наследственных (сочетание генов, мутаций) и средовых факторов, а также их соотношения в этиологии болезней. Как теоретическая и клиническая дисциплина медицинская генетика продолжает интенсивно развиваться в разных направлениях: изучение генома человека, цитогенетика, молекулярная и биохимическая генетика, иммуногенетика, генетика развития, популяционная генетика, клиническая генетика.

4 Генетика как наука является достаточно молодой. Она родилась в 1900 году. Вся история генетики делится на несколько этапов:

1. Доменделевский (до 1865 года)

2. До переоткрытия законов Менделя (1865-1900)

Г. Мендель проводил опыты с горохом и проанализировав результаты он обнаружил специфические особенности распределения признаков родительских особей в их потомстве.Свои выводы он представил в статье «Опыты над растительными гибридами». Однако эти исследования остались незамеченными до момента их переоткрытия, что произошло в 1900 г тремя ботаниками независимо друг от друга Г. Де Фриз, К. Корренс, Э.Фон Чермак.

3. Этап классической генетики (1900-1953)

4. Современный этап (этап молекулярной генетики, с 1953)

Современный этап связан с изменением модельных объектов - микроорганизмы, т. к. например бактерии гаплоидны и у них функционируют все гены. Активно применяются методы точных наук: рентгеноструктурный анализ, электронная микроскопия, метод меченых радиоизотопов и т. п.

История генетики человека начинается в 1752 г когда врачП.Монертьюи описал наследование 2х болезней: шестипалости и альбинизма, и доказал, что эти признаки передаются и от отца и от матери, т. е. Они равнозначны. В 1815 г врач Дж.Адамс предложил все заболевания человека, которые передаются по наследству разделить на 2 группы:

1. наследственные - те которые непосредственно передаются от родителя к ребенку (доминантные)

2. семейные - у здоровых рождается больной ребенок, но эта болезнь встречается у других членов семьи (рецессивные)

Адамс впервые предостерег от опасности близкородственных браков.

В 1820 г Нассе описал наследование гемофилии генов: болеют как правило мальчики, а носители - их мамы.

В 1876 г Горнер показал, что дальтонизм похож по передаче потомству на гемофилию.

Большой вклад внес ФрГальтон, который предложил методы изучения генетики генов (генеалогический, близнецовый и статистический) и ввел в биологию понятия регресс и евгеника - облагораживание человеческого вида путем поддержки воспроизводства людей, обладающих желаемыми качествами и препятствование воспроизводству больных, умственно отсталых и калек..

В 1900 г К.Ландштайнер описал группы крови по системе А,В,0 на 4 группы крови. А в 1924 г Бернштейн описал наследование групп крови по системе А,В,0, которое наследуется по принципу множественного аллелизма.

В 1902 гА.Гаррод описал наследование рецессивного заболевания алкаптонурии.

В 1903 г Фараби описал первое доминантное заболевание брахидактилия (короткопалость).

В 20-30е годы 20 века развитие генетики человека в Советской России занимало ведущие позиции в мире. Большой вклад внесли: Н.Н. Кольцов, Ю.А. Филипченко (изменчивость, гены-модификаторы), А.С. Серебровский, С.С.Четвериков, С.Н. Давиденков (наследственность многих заболеваний).

В 1953 г изучение генетики человека перешло на молекулярный уровень и в конце 20 века началась расшифровка генома человека. В 2005 году геном полностью расшифрован.

Изучение генетики человека показало, что человек - неудобный объект:

«+» - позволяет рассказать о признаках и болезнях родственников;

«-» - малочисленное потомство, невозможность направленных скрещиваний, невозможность экспериментального применения мутагенов, позднее половое созревание, отсутствие подробных родословных, отсутствие точной регистрации наследственных признаков, большое число мелких хромосом (46) трудноразличимых, невозможность обеспечения одинаковых условий для развития потомков от разных браков.

5 В настоящее время одним из основных методов профилактики наследственной и врожденной патологии является медико-генетическое консультирование, которое дает возможность пациенту и его семье получить необходимые сведения о способах предупреждения заболевания, его течении, вероятности повторения его у потомков. Первая медико-генетическая консультация была организована в 1929 г в Институте нервно-психической профилактики в Ленинграде профессором С.Н. Даавиденковым для больных с заболеваниями нервной системы. Зарубежные учреждения подобного типа были открыты в 40-х годах 20 века. В 1950 г Ш.Рид опубликовал первое краткое руководство по генетическому консультированию.

Изучение генома человека на молекулярном уровне позволило проводить диагностику наследственных заболеваний, в т.ч. И у плода во время беременности. Огромное значение имеет ДНК-диагностика опухолей и заболеваний с наследственной предрасположенностью до начала их клинических проявлений.

В последние годы 20 века началась разработка методов генотерапии - лечение с помощью генов и продуктов их работы. Надежды, возлагаемые на генотерапию обусловлены её направленным воздействием на причину патологических изменений и следовательно высокой эффективностью коррекции этих изменений.

В настоящее время проводится работа по созданию «генетического паспорта» человека, который будет индивидуален для каждого человека. Паспорт будет содержать информацию о генах, определяющих предрасположенность к различным заболеваниям.

5 Современная генетика стремительно развивается и ощутимо влияет на медицину. Генетика прошла несколько этапов, в результате чего появились современные классические знания о генетических основах живого организма, Генетику можно считать теоретическим фундаментом современной медицинской науки. Понимание наследования и возможных изменений как нормальных, так и патологических признаков человека необходимо при изучении физиологии, гистологии, биохимии, педиатрии, терапии, хирургии, неврологии, дерматовенерологии, офтальмологии, отоларингологии, патофизиологии и других клинических дисциплин для исследования этиологии, патогенеза, влияния на передачу наследственных признаков факторов внешней среды, продуктов питания, лекарственных препаратов.


Раздел 1. ЦИТОЛОГИЧЕСКИЕ И БИОХИМИЧЕСКИЕ ОСНОВЫ НАСЛЕДСТВЕННОСТИ

Тема 1. Цитологические основы наследственности.

· Тимолянова Е.К. Медицинская генетика. – Ростов-на-Дону: Феникс, 2003.

· Бочков Н.П. Медицинская генетика. – М.: Мастерство, 2002.

1 Все живые организмы состоят из клеток. Некоторые - всего лишь из одной клетки (многие бактерии и протисты), другие являются многоклеточными.

Клетка - элементарная структурная и функциональная единица организма, обладающая всеми основными признаками живого. Клетки способны размножаться, расти, обмениваться веществами и энергией с окружающей средой, реагировать на изменения, происходящие в этой среде. В каждой клетке живого организма содержится наследственный материал, в котором заключена информация обо всех признаках и свойствах данного организма.

Для того чтобы понять, как существует и работает живой организм, необходимо знать, как организованы и функционируют клетки. Многие процессы, присущие организму в целом, протекают в каждой его клетке (например, синтез органических веществ, дыхание и др.).

В настоящее время все клетки делят на прокариотические и эукариотические.

Изучением строения клетки и принципов ее жизнедеятельности занимается цитология (от греч. китос - клетка, ячейка, логос - учение, наука).

Клетки живых организмов могут различаться

· по форме

· размеру

· выполняемым функциям, но при этом все клетки имеют определенный план строения.

Клетка состоит из трех основных частей: поверхностного аппарата, цитоплазмы и ядра (у эукариот).

1. Поверхностный аппарат образован цитоплазматической мембраной (плазмолемма) и надмембранным комплексом. Поверхностный аппарат ограничивает внутреннее содержимое клеток, защищает его от внешних воздействий, осуществляет обмен веществ между клеткой и внеклеточной средой. Надмембранный комплекс клеток растений, грибов и многих протистов представлен плотной, часто многослойной, разнообразной по строению клеточной стенкой (оболочкой). Клетки животных покрыты только цитоплазматической мембраной. Клеточная мембрана имеет жидкостно-мозаичную структуру.

2. Цитоплазма (от греч. китос - клетка, ячейка, плазма - оформленный) включает внутреннюю среду клеток - гиалоплазму - и погруженные в нее цитоскелет, органоиды и включения. Цитоскелет (внутриклеточный скелет) - это система микротрубочек и микрофиламентов (микронитей). Он выполняет опорную функцию и обеспечивает внутриклеточные движения. Органоиды - постоянные структуры цитоплазмы, имеющие разное строение и выполняющие различные функции. Органоиды можно разделить на две группы: мембранные и немембранные. Мембранные органоиды также представлены двумя типами - двумембранными и одномембранными. К двумембранным органоидам относятся митохондрии и пластиды. Одномембранными органоидами являются эндоплазматическая сеть, комплекс Гольджи, лизосомы и вакуоли. К немембранным органоидам относятся рибосомы и клеточный центр. Включения - непостоянные внутриклеточные образования. Они могут появляться в процессе жизнедеятельности, исчезать и вновь образовываться. Включения в основном представляют собой запасные вещества или конечные продукты обмена веществ клетки. Это могут быть, например, липидные капли, гранулы (зерна) крахмала или гликогена, кристаллы солей.

3. Ядро - важнейшая структура клеток эукариот, имеющая двумембранное строение. В нем содержится ДНК, которая является носителем наследственной информации. Ядро обеспечивает хранение и реализацию наследственной информации, а также ее передачу дочерним клеткам.

Все клетки, независимо от уровня организации, сходны по химическому составу. В живых организмах обнаружено 86 химических элементов периодической системы Д.И.Менделеева. Они образуют два класса соединений – органические и неорганические . К неорганическим веществам клетки относятся вода (75-85%), и минеральные вещества (1-1,5%). Органические вещества клетки представлены белками (10-20%), жирами (1-5%), углеводами (0,2-2%), нуклеиновыми кислотами (1-2%). % от сырой массы клеток.

2 Ядро - важнейшая структура клеток всех эукариот. Большинство клеток имеет одно ядро. Изредка встречаются двуядерные (инфузория туфелька - опыт Вильсона с макро- и микронуклеусом. Оставался макро- существовала но не делилась, оставался микро- восстанавливала макронуклеус и существовала как нормальная инфузория, без ядра оставалась - отмирала. ) и многоядерные клетки (некоторые протисты, клетки грибов, поперечнополосатые мышечные волокна). Некоторые клетки в зрелом состоянии не имеют ядра, например эритроциты млекопитающих, клетки ситовидных трубок цветковых растений. Такие клетки не способны к размножению.

Обычно ядро имеет шаровидную форму, но может быть линзовидным, веретеновидным и даже многолопастным (в клетках зернистых лейкоцитов). В животной клетке ядро обычно расположено в центре, а в растительной, как правило, находится на периферии клетки (центральную часть часто занимает вакуоль).

Строение и функции ядра. Общий план строения ядра одинаков у всех клеток эукариот. Оно состоит из ядерной мембраны, ядерного сока, хроматина и ядрышка (одного или нескольких).

От цитоплазмы содержимое ядра отделено ядерной мембраной (кариотека), состоящей из двух мембран. Наружная мембрана граничит с цитоплазмой клетки, в некоторых местах она переходит в каналы эндоплазматической сети. К наружной мембране ядра прикрепляются рибосомы. Внутренняя мембрана, контактирующая с ядерным соком, гладкая. Ядерная оболочка пронизана множеством пор, через которые из ядра в цитоплазму выходят субъединицы рибосом, молекулы иРНК и тРНК, а в ядро из цитоплазмы поступают различные белки (в том числе ферменты), нуклеотиды, АТФ, ионы и т. д. Наибольшее число пор у яйцеклетки, наименьшее у сперматозоида (0).

Ядерный сок (кариоплазма) имеет гелеобразную консистенцию, в его состав входят различные органические и неорганические вещества. Ядерный сок имеет слабощелочную реакцию. В ядерном соке располагаются хроматин и ядрышки.

Хроматин под микроскопом имеет вид тонких тяжей, мелких гранул или глыбок. Основу хроматина составляют молекулы ДНК, соединенные со специфическими белками-гистонами. В состав хроматина входят также молекулы РНК, синтез которых осуществляется на ДНК. В виде длинных нитей - активно работает, в виде глобул - не работает.

Ядрышки - плотные, округлые, не ограниченные мембраной участки ядра. Здесь происходит синтез рРНК и объединение их с молекулами белков, что приводит к образованию субъединиц рибосом. Таким образом, ядрышко представляет собой место синтеза рРНК и сборки отдельных субъединиц рибосом. В начале деления клетки ядрышки разрушаются, а в конце деления формируются вновь в определенных участках хромосом.


Похожая информация.


Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru

Министерство образования

Ивановская государственная сельскохозяйственная академия

РЕФЕРАТ

На тему: «Цитологические основы наследственности»

Выполнил: студент 2 курса

3 группы факультета

ветеринарной медицины и

биотехнологии в животноводстве.

Спец. «Зоотехния»

Выполнил:Власов. В.

Проверил: Крутов Е.К.

Иваново 2006

Цитологические основы наследственности

клетка наследственность хромосома кариотип

Основной единицей живого является клетка. Она имеет вес свойства живого, то есть, способна размножаться, видоизменяться и реагировать на раздражения. Более мелкие единицы материи этих свойств не проявляют. Р. Вирхов писал: «Клетка есть последний морфологический элемент всех живых тел, и мы не имеем права искать настоящей жизнедеятельности вне нее»

Среди живых организмов встречаются два типа организации клеток: прокариотическая клетка (у прокариот -- бактерий и синезеленых водорослей) и зукариотическая клетка (у эукариот, то есть всех остальных одно- и многоклеточных организмов-- растений, грибов и животных).

Строение клетки.

Прокариотическая клетка покрыта цитоплазматической мембраной, играющей роль активного барьера между цитоплазмой клетки и внешней средой. Снаружи от мембраны расположена клеточная стенка. У прокариотическх клеток нет морфологически выраженного ядра, но имеется зона, заполненная ДНК, несущей наследственную информацию. В основном веществе цитоплазмы прокариотических клеток располагаются многочисленные рибосомы.

Бактерии размножаются путем простого деления. Находящаяся в ядерной области ДНК прикреплена к мезосоме-- структуре, образуемой цитоплазматической мембраной. Деление бактериальной клетки начинается с деления мезосомы; затем две половинки мезосомы расходятся, увлекая за собой ДНК, последняя также делится на две части, из которых впоследствии образуются ядерные области двух дочерних клеток.

Клетка эукаряот организована сложнее, чем прокариотическая. Она покрыта цитоплазматической мембраной, которая играет важную роль в регулировании состава клеточного содержимого, так как через нее проникают все питательные вещества и продукты секреции. Каждая клетка содержит небольшое шаровидное или овальное тельце, называемое ядром. Схема строения эукариотической клетки Ядро служит важным регулирующим центром клетки, оно содержит наследственные факторы (гены), определяющие ври знаки данного организма, и управляет многими внутриклеточными процессами

Оболочка, окружающая ядро и отделяющая его от цитоплазмы, ядерная мембрана -- регулирует движение веществ из ядра и в ядро. В полужидком основном веществе ядра-кариоплазме размещается строго определенное число вытянутых нитевидных образований, называемых хромосомами. На окрашенном срезе неделящейся клетки хромосомы обычно имеют вид неправильной сети из темных тяжей и зернышек, в совокупности называемых хроматином.

В ядре находится сферическое тельце, называемое ядрышком. Ядрышки исчезают, когда клетка готовится к делению, а затем появляются вновь; они, по-видимому, участвуют в синтезе рибонуклеиновых кислот.

Материал, находящийся внутри плазматической мембраны, но вне ядра, называется цитоплазмой.

При исследовании тонкого среза клетки в электронном микроскопе видно, что цитоплазма представляет собой чрезвычайно сложный лабиринт из мембран, образующих так называемую эндоплазматическую сеть, заполняющую большую часть цитоплазмы. Существуют два типа эндоплазматической сети: гранулярная, к мембранам которой прикреплено множество рибосом - мелких рибонуклеопротеидных частиц, служащих местом синтеза белка, и агранулярная, состоящая из одних только мембран. В одной и той же клетке может встречаться сеть того и другого типа. Остальная часть цитоплазмы заполнена другими специализированными структурами, несущими специфические функции: это митохондрии, аппарат Гольджи, центриоли и пластиды.

Все живые клетки содержат митохондрии -- тельца величиной О,2--5 мкм, форма которых варьирует от сферической до палочковидной и нитевидной. В одной клетке может быть от нескольких митохондрий до тысячи и более. Обычно они сосредоточены в той части клетки, где обмен веществ наиболее интенсивен.

Каждая митохондрия ограничена двойной мембраной; внешний слой мембраны образует гладкую наружную поверхность, а от внутреннего слоя отходят многочисленные складки в виде параллельных, направленных к центру митохондрии выступов, которые могут встречаться, а иногда и сливаться со складками, отходящими от противоположной стороны Внутренние складки, называемые кристами, содержат ферменты, участвующие в системе переноса электронов, которая играет важнейшую роль в превращении энергии питательных веществ в биологически полезную энергию, необходимую для осуществления клеточных функций. Полужидкое внутреннее содержимое митохоидрии -- матрикс -- содержит ферменты. Митохондрии, главная функция которых состоит в вырабатывании энергии, образно называют электростанциями клетки.

В клетках большинства растений имеются пластиды-- формирования, в которых происходит синтез или накопление органических веществ.

В клетках животных и некоторых низших растений около ядра расположены два небольших тельца -- центриоли, Которые играют важную роль в клеточном делении: в начале деления они отходят друг от друга, направляясь к противоположным полюсам клетки, и между ними образуется так называёмое веретено деления.

Комплекс Гольджи -- компонент цитоплазмы, встречающийся почти во всех клетках, кроме зрелых спермиев и красных кровяных телец,--представляет собой неупорядоченную сеть канальцев, выстланных мембранами. Обычно он расположеноколо ядра и окружает центриоли. Функция комплекса еще невполне выяснена, но, по мнению некоторых цитологов, комплекс Гольджи служит местом временного хранения веществ, вырабатываемых на гранулярной эндоплазматической сети, а канальцы комплекса соединены с плазматической мембраной. Лизосомы-- группа внутриклеточных органелл, встречающихся в животных клетках, -- сходны по величине с митохонд-риями, но несколько менее плотные; они представляют собойограниченные мембраной тельца, которые содержат разнообразные ферменты, способные гидролизовать макромолекулярные компоненты клетки. В случае проникновения в клетку чужеродной ДНК (вируса) лизосомы выделяют в цитоплазму ферменты, расщепляющие ДНК,--нуклеазы, и тем самым выполняют защитную функцию.

Кроме перечисленных элементов, цитоплазма может содержать вакуоли-- полости, заполненные жидкостью и отделенные от остальной цитоплазмы вакуолярной мембраной. Вакуоли весьма обычны в клетках растений и низших животных, но редко встречаются в клетках высших животных процессами.

Ядро является важнейшей составной частью клетки. В период между делениями ядро отделено от цитоплазмы ядерной оболочкой и чаще всего имеет шаровидную или эллиптическую форму. Полость ядра заполнена ядерным соком (кариоплазмой),0 вязкости которого отличают вязкость цитоплазмы и часто бывает значительно ниже. Ядро не обладает способностью восстанавливать ядерную оболочку, поэтому при ее повреждении содержимое ядра смешивается с цитоплазмой.

Ядрышки - округлые тельца (одно или несколько), заключенные в ядре, характеризуются высоким коэффициентом преломления. Более крупные и плотные ядрышки характерны для клеток, отличающихся высокой активностью, а именно для интенсивно делящихся эмбриональных клеток и для клеток, осуществляющих синтез белка. В процессе клеточного деления ядрышко исчезает, а затем вновь появляется. В ядрышках синтезируется в РНК, из которой формируются частицы рибосом.

Кроме ядрышек, в ядре находятся хромосомы. Они имеют продолговатую форму с расположенной в том или ином участке перетяжкой -- центромерой. Центромера делит хромосому на две части, называемые плечами хромосомы. Хромосому с расположенной посередине центромерой называют метацентрической, при этом плечи хромосомы одинаковой величины; если центромера смещена в сторону от центра, то хромосому называют субметацентрической; при смещении центромеры на значительное расстояние от центра -- акроцентрической Расположение центромеры служат основой для классификации и идеитификации хромосом.

Хромосомы можно идентифицировать по их длине. длина хромосомы варьирует от 1 до 30 мкм; большая часть хромосом в состоянии максимального сокращения в митозе имеет длину менее 10 мкм. Абсолютная и относительная длина двух плеч хромосомы служит главным, а иногда и единственным критерием для распознавания отдельных хромосом.

Иногда хромосомы можно идентифицировать по ряду дополнительных признаков. Очень часто таким признаком оказывается находящееся на одном из концов хромосомы небольшое округлое тельце--так называемый спутник (или сателлит), соединяющийся с основной хромосомой тонкой хроматиновой нитью или вторичной перетяжкой.

В клетках большинства организмов хромосомы видны только во время клеточного деления. По окончании митоза хромосомы начинают вытягиваться до тех пор, пока не становятся такими тонкими, что их бывает невозможно различить с помощью светового микроскопа.

Более чем половину всей массы хромосомы составляет особый белок гистон, обладающий щелочными свойствами вследствие высокой концентрации в нем аминокислот аргинина и лизина. Кроме того, хромосома содержит некоторое количество белка, имеющего кислотные свойства. ДНК и РНК содержатся в хромосомах в небольших, но измеримых количествах.

Гистон и ДНИ объединены в структуру, называемую хроматиновой нитью, которая представляет собой двойную спираль ДНИ, окружающую гистоновый стержень; она построена из повторяющихся единиц (нуклеосом), в каждую из которых входят примерно 200 пар оснований ДНК и по две молекулы каждого из четырех гистонов (н2А, Н2В, НЗ и Н4) (рис. 4). Полагают, что эти восемь гистоновых молекул образуют сферическую единицу. Каким именно образом двойная спираль ДНК располагается вокруг гистонов, пока неясно.

Хроматиновая нить обычно образует спираль диаметром около 25 мкм, что находится на грани разрешающей способности самых мощных световых микроскопов. По способности окрашиваться ядерными красителями хроматиновые нити подразделяют на две группы: эухроматин и гетерохроматин. Последний окрашивается более интенсивно.

Перед началом клеточного деления большая часть хроматина уплотняется, образуя хромосомы. Число хромосом в клеточных ядрах всех особей какого-либо вида постоянно и представляет собой один из его признаков.

Все клетки любого организма происходят от зиготы -- клетки, образующейся в результате слияния двух гамет (половых клеток, имеющих одинарный, или гаплоидный, набор хромосом--п). Зигота содержит диплоидный набор хромосом (2п). Одинарный набор хромосом называют геномом.

Набор хромосом соматической клетки, свойственный тому или иному виду животных или растений, называют кариотипом. Он включает все особенности хромосомного комплекса: число хромосом, их форму, наличие видимых под световым микроскопом деталей строения отдельных хромосом

Среди всех хромосом кариотипа различают пары аутосом, одинаковые для мужских и женских особей, и одну пару половых хромосом, различающихся у мужских в женских особей. Половые хромосомы женских особей млекопитающих обозначают буквами ХХ и мужских особей -- ХУ, поэтому женский пол называют гомогаметным, мужской -- гетерогаметным. У птиц и бабочек, наоборот. женский пол гетерогаметный, мужской гомогаметный.

Деление клеточного ядра.

Непрямое деление клеточного ядра с образованием спирализованных митотических хромосом называется митозом. При митозе оболочка ядра растворяется, ядро прекращает свое существование, после расхождения хромосом к полюсам деления клетки появляется два ядра. В отличие от митоза при амитозе (прямое деление) ядро разделяется перетяжкой, или почкованием, на два или большее число ядер. Амитоз является более простым видом деления.

Большинство клеток делятся только митотически. Путем митоза образуются зародышевые клетки, происходит дробление оплодотворенной яйцеклетки (зигота) и тех клеток, которые дают начало закладке новых тканей и органов. Следовательно, существенные моменты в развитии организма обеспечивает не амитоз, а митоз. При митозе оказывается удвоенное число хромосом, и существо митоза2 сводится к обеспечению их распределения между двумя клетками.

Амитотическое деление наблюдается в тех случаях, когда необходимо быстрое накопление массы клеток с отложением запасных питательных веществ. Амитотически делятся клетки, как правило, имеющие полиплоидное число хромосом. При этом в дочернюю клетку после деления попадает по меньшей мере один из нескольких полных наборов хромосом. У инфузорий, имеющих два ядра, полиплоидный микронуклеус делится амитотически, диплоидный микронуклеус -- митотически.

Митотический цикл клетки включает совокупность процессов, которые происходят в ней для подготовки митоза. В митотическом цикле различают три фазы G1,S,G2. Буквой G обозначают стадии роста клетки, буквойS-фазу синтеза ДНК, удвоение ее нитей. Это наиболее важная фаза цикла, так как без удвоения ДНК невозможна и редупликация хромосом. В первой фазе идет подготовка к синтезу, в последней непосредственная подготовка к митозу: синтез белков веретена деления, других белков РНК в ядре клетки. В это же время заканчивается накопление энергии для протекающего и начинает накапливаться энергия для следующего за ним митоза.

Соотношение длительности фаз митотического цикла различно. В

клетках кишечника мыши фазы 0, и 02 длятся соответственно 9,5; 7,5 и 1ч.

Таким образом, время митотического цикла может быть различно, но в общем близко к суткам, для быстроделящихся клеток время цикла может составлять несколько часов (клетки быстрорастущих опухолей, клетки инфузорий и рубца желудка жвачных). Митоз длится в течение 1--2 ч, а в целом в течение времени, которое в 10--ЗО раз меньше интерфазы -- периода жизни клетки между делениями. При дроблении зиготы митоз может проходить за минуты. Но у некоторых организмов, например у черепахи, митоз длится до трех дней.

Митоз подразделяют на профазу, метафазу, анафазу и тело- фазу Вместе с веретеном деление, деление нити которого соединяют хромосомы с полюсами деления клетки, хромосомы формируют целостный митотический аппарат. Наличие этого аппарата обеспечивает точное расхождение гомологов (парных хромосом) к полюсам клетки, которые образуются в результате расхождения к ее противоположным сторонам центриолей центросомы.

Профаза . Это наиболее длительная фаза митоза, связанная с образованием спирализованных и уплотненных хромосом. В световой микроскоп можно видеть, что хромосомы удвоены, состоят из двух хромотид, соединенных центромерой. Спирализация и уплотнение за счет насышение хромосомы гистонами соединяет хроматиды по всей длине в единый так называемый синаптеномальный комплекс, поэтому к метафазе удвоенная хромосома выглядит, не считая ее концов, как единое целое

В ходе профазы хромосомы некоторое время контактируют с бёлковой оболочкой ядра. Половые хромосомы Х и У, которые спирализуются и уплотняются позднее других, нередко задерживаются у оболочки ядра, поэтому на следующей фазе (метафаза) их часто видно на периферии, с края скопления хромосом. В поздней профазе (прометафаза) завершается расхождение центриолей и образование полюсов деления клетки. К моменту наступления метафазы из специфических белковых нитей, включающих некоторое количество РНК, формируется веретено деления, ориентирующее в дальнейшем правильное расхождениё хромосом к полюсам хромосомы направляются центромерами в сторону центра экваториальной плоскости клетки и ядра, которое к этому времени теряет целостность: оболочка растворяется, цитоплазма и нуклеоплазма смешиваются; ядрышки исчезают.

Метафаза . В метафазе хромосомы полностью располагаются в экваториальной плоскости клетки образуя так называемую метафазную пластинку. В это время удобно анализировать количество, размёры форму хромосом, учитывать число и характер хромосомных мутаций (хромосомные перестройки, или аберрации). В конце метафазы происходит продольное расщепление центромер и обособление хроматид, каждая из них становится самостоятельной хромосомой С6гласно гипотезе, выдвинутой советскими генетиками еще в 30-е годы, расщепление центромер может иметь эволюционное значение. Если центромера расщепляется не вдоль, а поперек, из одной двуплечей хромосомы получается две телоцентрических, что существенно изменяет характер действия генов этих хромосом в силу так называемого эффекта положения.

Анафаза . В анафазе происходит точное распределение и отход хромосом к полюсам деления. Как правило она является самой короткой фазой митоза. При расхождении хромосом в разные стороны направляются разъединившиеся хроматиды каждой хромосомы. В итоге в каждом новом ядре содержится идентичный исходному набор хромосом и генов, и развитие может начаться сначала в том же порядке, как и в исходной клетке. Движение к полюсам направляется нитями веретена, обеспечивающими хромосомам избранное положение. В область, огражденную нитями, как правило, не проникают другие органеллы. Хотя хромосомы прикреплены к нитям, их движение происходит самостоятельно. Это лодтверждают примеры, когда хромосомы движутся к полюсам не центромерами, к которым прикреплены нити, а вперед «плечами» , что отмечено у комаров из рода Сциара.

Телофаза . В телофазе хромосомы образуют сгусток у полюсов деления затем, начинают деспирализироваться, в следствии чего перестают активно окрашиваться и становятся невидимыми для световой микроскопии. Формируются оболочки новых ядер, появляются ядрышки.Это указывает на то, что гены хромосом вновь вступают в действие. После этого следует цитокинез -- деление клетки, У животных она делится перетяжкой, у растений строится клеточная стенка, причем центрами образования ее фрагментов лежат остатки нитей веретена.

Спиралезация и уплотнение хромосом в митозе облегчают точное распределение генетического материала, уменьшая в тысячи раз длину и собирая в компактное образование нити ДНК. Появление митотической хромосомы приводит к прекращению действия генов, в митозе энергия клетки не расходуется ни на какие синтезы. Кроме того, гены в синаптеномальном комплексе в значительно большей степени защищены от повреждающего действия внешних факторов, в том числе от влияния мутагенов. Это позволяет видеть в образовании митотических хромосом средство сохранения наследственной информации при передаче ее в дочерние клетки.)

Причины, в результате которых клетка приступает к митозу, до настоящего времени не вполне ясны, поэтому объяснение дается пока на уровне гипотез. Предполагается, что разрастание цитоплазмы до определенного максимума затрудняет эффективную работу генов, и в порядке действия обратной связи происходит деление ядра и клетки. Ядро с набором хромосом имеет прежние размеры, цитоплазма уменьшается вдвое. В пользу этой теории говорят данные по удалению у простейших (амебы) части цитоплазмы. Клетки в таком случае не приступают к митозу и делению до восстановления некоторой критической величины своей массы.

Другой причиной наступления митоза считают нарушение ядерно-плазменного отношения. Хотя ядро в ходе жизни клетки увеличивается, рост цитоплазмы опережает этот процесс. Нетрудно видеть в этом то же явление, которое считается причиной митоза и деления клетки согласно первой гипотезе. Предполагается также, что причиной митоза является удвоение хромосом. Наконец, допускается, что в определенный момент в клетке возникают специфические вещества, стимулирующие вступление ее в митоз. Существенным моментом всех таких объяснений является представление о том, что клетка перед митозом находится в несбалансированном, неравновесном состоянии. Поэтому можно предположить, что митоз -- не только средство точного распределения генетического материала между исходной и дочерней клетками, но и средство восстановления равновесия, повышения упорядоченности структур и процессов в клетке.

Митоз обеспечивает биологическое омоложение клетки, поэтому они избегают преждевременной гибили. На такой точке зрения

Д. Мэзия и известный советский генетик И. А. Рапопорт. Существенные детали этого процесса остаются пока неизвестными, однако ряд примеров показывает, что клетки, длительное время не проявляющие способности к делению, погибают (исключение представляют, вероятно, только нервные клетки животных, которые способны без деления существовать в всей жизни организма).

Причины, вызывающие деление клетки -- цитокинез, также пока не выяснены. Установлено, что в быстроделящихся клетках повышена активность ферментов рибонуклеаз. Это позволяет предполагать, что такие ферменты расщепляют комплексы РНК и белков, обладающих ферментными свойствами. Освобождаясь от связывающей его РНК, фермент приобретает активность и стимулирует деление клетки.

Мейоз и фазы мейоза. Мейоз -- особое деление яда, которое завершается образованием тетрады, то есть четырех клеток с одинаковым, гаплойдным набором хромосом. У высших животных мейоз происходит в гониальной зародышевой ткани яичников и семенников. За ним следует гаметогенез -- образование зрелых яйцеклеток и спермиев. Мейоз, в отличии от митоза-единое сдвоенное деление, так как между первым и вторым расхождением хромосом в митозе нет настояшей интерфазы с деспирализацией хромосом, ростом и развитием клеток, новым удвоением ДНК и т. д. В некоторых случаях до окончания мейоза не закладываются и клеточные перегородки. Важной особенностью мейоза является сближение гомологичных хромосом, во время которого может происходить кроссинговер, то есть взаимный обмен генами между гомологичными хромосомами, что повышает уровень комбинативной изменчивости.

Как и в митозе, в мейозе наибольшее время занимает профаза. В первом делении она является настолько длительной, что в ней различают несколько стадий. В зависимости от вида организма и изменений в окружающей среде профаза мейоза может длиться многие дни и даже годы, У мышей продолжительность профазы составляет около 13 дней, у лягушек (правда, в связи с тем, что на время зимовки их жизнь как бы «замирает») профаза длится около двух лет. У млекопитающих профаза начинается еще в период эмбриогенеза, а созревание яйцеклеток и спермиев происходит под контролем гормонов в период половой зрелости.

В первой профазе мейоза (профаза-i) различают следующие стадии: лептонему, зигонему, пахинему, диплонему и диакинез. В лептонеме можно видеть удвоенные нити хромосом "причем в отличие от митоза они спирализуются не сразу. Это связано с тем, что профаза-i включает процесс кроссинговера, для которого необходимо точное соединение гомологичных хромосом.

В зигонеме парные хромосомы сближаются, происходит конъюгация-- соединение двух хромосом в один бивалент. Соединение осуществляется с концов хромосом, поэтому места локализации гомологичных генов в той и другой хромосоме совпадают. Так как хромосомы удвоены, в биваленте имеется четыре хроматиды, каждая из которых в итоге мейоза оказывается уже хромосомой в гаплоидном наборе хромосом одной из четырех клеток тетрады. В зигонеме усиливается спирализация и уплотнение хромосом, и бивалент выглядит как единое целое. От зигонемы до диплонемы бивалент существует в видесинаптеномального мейотического комплекса, аналогичного таковому в митозе, однако белковый кар- к в данном случае скрепляет не две, а четыре хроматиды

В пахинеме происходит кроссинговер, отражением которого являются видимые на следующей стадии (диплонеме) перекресты, или хиазмы хромосом. В диплонеме бивалент начинает разъединяться в порядке, обратном тому, который наблюдался при конъюгации. Сначала поляризуются и расходятся центромеры, затем в обе стороны от них разъединяются хромосомы, при этом хиазмы скользят к концам хромосом. Предполагают, что каждая хиазм соответствует одному акту кроссинговера. В диакинезе бивалент выглядит в виде двух сопряженных концами дуг, которые соединены только концами хромосом. На этом заканчивается профаза-1.

За профазой, как и при митозе, следуют метафаза и анафаза. Однако, оставаясь удвоенными, к полюсам расходятся соединенные Центромерой хромосомы, в итоге в телофазе-I каждое ядро содержит не двойное, а гаплоидное число хромосом. Поэтому первое деление мейоза называют редукционным, уменьшающим число хромосом в ядре.

За телофазой-1 следует интеркинез -- непродолжительное состояние относительного покоя (хромосомы не претерпевают заметной деспирализации в телофазе-1 и остаются различимы в течение Интеркинеза), затем начинается второе деление мейоза. Если после телофазы происходит деление клетки, образуется диада гаплоидных клеток.

Второе деление мейоза, поскольку хромосомы уже удвоены, сходно с митотическим. Число хромосом остается гаплоидным, количество ДНК в каждой хромосоме становится после расщепления и расхождения хроматид уже не удвоенным, а нормальным. Поэтому второе деление мейоза называют эквационным, или уравнительным. В каждой из четырех клеток тетрады имеется одинарный набор хромосом, а каждая хромосома содержит только одну нить ДНИ.

Биологическое значение мейоза. Как и митоз, мейоз обеспечивает точное распределение генетического материала в дочерние клетки диады и тетрады. Вместе с тем в отличие от митоза мейоз является средством повышения уровня комбинативной изменчивости, что объясняется двумя причинами. Первая из них заключается в том, что происходит свободное, основанное на случайности комбинирование хромосом в клетках диады. Второй причиной усиления комбинативной изменчивости является кроссинговер, ведущий к возникновению новых комбинаций генов в пределах хромосом.

В каждом следующем поколении делящихся клеток в результате действия указанных причин образуются новые сочетания генов. в гаметах, а при размножении животных -- новые сочетания генов родителей у их потомства. Это каждый раз открывает новые возможности для действия отбора и создания генетически разных форм, что позволяет существовать группе животных в переменных условиях среды. Таким образом, мейоз оказывается средством генетической адаптации, повышающим в поколениях надежность существования особей.

Важным аспектом мейоза является создание стадийно молодых клеток, избавление клетки от опасности гибели. Гаметы (продукты мейоза) оказываются самыми молодыми из всех известных- видов клеток. Именно гаметы способны дать начало развитию любого организма. На примере продуктов мейоза можно видеть реализацию диалектического закона отрицания--отрицания: из стадийно молодой клетки через стадию гаметы, затем зиготы и продуктов ее деления развивается организм со всем многообразием его признаков и свойств. В определенный момент в организме формируется зародышевая ткань и происходит мейоз, ведущий к образованию клеток, вновь способных к развитию.

Наследств енность и изменчивость

Наследственность -- это свойство организмов передавать потомству и воспроизводить родительские признаки в других поколениях.

Основной путь наследования называется геномным, так как информация передается непосредственно через ген. При зачатии материнская яйцеклетка в десятки раз превышающая по размеру сперматозоид, передает дополнительную информацию дочерней клетке, такое наследование называется цитоплазматическим или митахондриальным. Открытие последнего типа наследования принадлежит молекулярному генетику А.К. Уилсону. Он пришел к поразительному даже для современной науки выводу, что все человечество произошло от одной женщины, жившей в восточной Африке 200-150 тысяч лет назад. Данные Уилсона о «митохондриальной Еве», хотя и вызвали естественное возрождение ученых, были многократно подтверждены. Итак, при рождении ребенок получает 50% генов от матери, 50% от отца и дополнительную информацию, хранящуюся в материнской яйцеклетки.

Существует еще так же эпигеномкая наследственность, информация, которая передается другими путями. Для млекопитающих характерно воздействие на плод на эмбриональном уровне. Любая инфекция, болезнь, перенесённая матерью, влияет на плод. Например, если мать на первых месяцах переболела краснухой (достаточно безобидным, в общем, то заболеванием), у плода с 90% гарантией будут наблюдаться серьезные отклонения в физическом и психическом развитии. Или, если мать во время беременности страдает от так называемого диабета беременных, у ребенка тоже будет нарушен глюкагоновый обмен.

В природе постоянно происходит колебание численности полуляций: число особей в полулящш то сокращается, то увеличивается. Эти процессы сменяют друг друга более или менее регулярно, поэтому их называют волнами жизни или популяционными волнами. В одних случаях они связаны с сезоном года (у многих насекомых, у однолетних растений). В других случаях волны наблюдаются через более длительные сроки и связаны с колебаниями климатических условий или урожаев кормов (массовое размножение белок, зайцев, мышей, насекомых). Иногда причиной изменения численности популяций являются лесной пожар, наводнение, очень сильные морозы или засухи.

Волны эти совершенно случайно и резко изменяют в популяция концентрации редко встречающихся генов и генотипов. В период спада волн одни гены и генотипы могут исчезнуть полностью, притом случайно и независимо от их биологической чёткости. А другие также случайно останутся и при том новом нарастании численности полуляций резко повысят свою концентрацию. Популяционные волны, как и мутацыонный процесс, поставляют случайный, ненаправленный наследственный материал для борьбы за существование и естественного отбора. Дарвин отметил соотносительный характер наследственной изменчивости: длинные конечности животных почти всегда сопровождаются удлинённой шеей, у бесшерстных собак наблюдаются недоразвитые зубы.

Связал с тем, что один и тот же ген оказывает влияние на формирование не одного, а двух и более признаков. В основе всех видов наследственной изменчивости лежит изменение гена или совокупности генов. Поэтому, говорят отбор по одному, нужному признаку, следует учитывать возможность появления в потомстве других, иногда нежелательных признаков, соотносительно с ним связанных.

Неопределенная изменчивость, которая затрагивает хромосомы или гены, т.е. материальные основы наследственности, она обусловлена изменением генов или образованием новых комбинаций их в потомстве.

Мутации -- обусловлены изменением генов комбинативная -- вызвал новой комбинацией генов в потомстве соотносительнно -- связала с тем, что один и тот же ген оказывает влияние на формирование не одного, а двух и более признаков.

Наследственность и изменчивость, -- разные свойства организмов, обусловливающие сходство и несходство потомства с родителями и с более отдаленными предками. Наследственность выражает устойчивость органических форм в ряду поколений, а изменчивость -- их способность к преобразованию дивергеция (от ср. - век. Лат. диверго -- отклоняюсь), расхождение признаков и свойств у первоначально близких групп организмов в ходе эволюции. Результат обитания в разных условиях и неодинаково направленного Е.О. Понятие дивергеция введено Дарвином для объяснения многообразия сортов культурных растений, пород домашних животных и биологических видов В неопределенную изменчивость входит мутация.

Особенности передачи наследственной информации определяются внутриклеточными процессами: митозом и мейозом. Митоз -- это процесс распределения хромосом по дочерним клеткам в ходе клеточного деления. В результате мвтоза каждая хромосома родительской клетки удваивается, и вдевтичлые копия расходятся по дочерним клеткам; при этом наследственная информация полностью передается от одной клетки к двум дочерним. Так происходит деление клеток в ортогенезе, т.е. процессе индивидуального развития. Мейоз -- это специфическая форма клеточного деления, которая имеет место только при образовании половых клеток, или гамет (спермотозоев и яйцеклеток). В отличие от метоза, число хромосом в ходе мейоза уменьшается вдвое; в каждую дочернюю клетку попадает лишь одна из двух гомологичных хромосом каждой пары, так что в половине дочерних клеток присутствует один гомолог, в другой половине -- другой; при этом хромосомы распределяются в гаметах независимо друг от друга. (Гены митохондрий и хлоропластов не следуют закону равного распределения при делении.) При слиянии двух галоидных гамет вновь восстанавливается число хромосом -- образуется диплоидная зигота, которая от каждого из родителей получила по одинарному набору хромосом.

Заключение

Едва ли найдутся люди, которым совершенно безразлична судьба их собственных детей. Забота о ближайших потомках должна начинаться не после их появления на свет, а задолго до этого момента, еще во время формирования семьи. По статистическим данным, из каждых 200 младенцев один появляется на свет с хромосомными аномалиями, некоторые из которых в состояния исковеркать всю его будущую жизнь. Более того, практически у каждого взрослого человека во всех клетках тела, включая половые, существуют несколько измененных генов, мутация в которых негативно влияют на их работу. Как скажутся такие гены на умственные способностях и на внешнем облике ребенка, если он получит другие дефектные гены от второго родителя? В США свыше 20 млн. человек, то есть почти каждый десятый, уже страдают от унаследованных расстройств здоровья, которые в разных условиях и по-разному могут проявляться в течение всей жизни. В других странах, независимо от экономического статуса, положение наверняка не лучше.

Единственное, что мы можем сделать, чтобы что-то противопоставить сложившейся ситуация -- отдавать себе отчет в серьезности положения и предпринимать разумные усилия для того, чтобы на свет не появлялись дети с тяжелыми наследственными патологиями. Реальный шанс для этого существует, но для этого надо быть, прежде всего, хорошо информированным о возможности собственных генетических заболеваниях или мутативных генах, которые могут стать их причиной у потомства. Подобную информацию можно получить в центрах медико-генетического консультирования. При этом врач не в праве навязывать свою волю пациентам, он может и должен лишь информировать их о возможных опасностях и последствиях проявления генетически врождённых заболеваний у потомства. Любопытно, что первая в мире подобная консультативная служба была организована именно в России, в Институте нервно- психиатрической профилактики еще в конце 20-х годов ХХ века.К сожалению, трагические последствия геноцида, который осуществляла гитлеровская Германия во время второй мировой войны, несколько затормозила развитие сети подобных консультаций, поскольку политика нацизма долгие годы бросала зловещую тень на любые попытки исправления наследственности человека.

На всем протяжении существования психогенетики как науки исследователи проявляли особый интерес к природе так называемых неадекватных форм развития. Спектр исследуемых феноменов простирался от тяжелых, редко встречающихся расстройств: например, аутизм и детская шизофрения, до часто встречающихся типов поведения, незначительно отклоняющихся от нормы: например, специфическая неспособность к математике. Современная статистика, собранная Всемирной Организацией Здоровья, свидетельствует о том, что каждый десятый ребенок, проживающий в развитых странах, подвержен риску.

Результаты психогенетических исследований, проведенные разными методами, говорят о существования первичной, «исходной», индивидуальность, задаваемой нашей наследственностью. Необходимо помнить, что психогенетические данные говорят о причинах именно различий между людьми, то есть о происхождении популяционной изменчивости, и ее выводы не могут быть перенесены на оценки индивидуально- психологических особенностей конкретного человека.

Все это говорит о существенной роли генотипа в формировании самых разных компонентов и уровней в структуре человеческой индивидуальности. Не спрашивай, что наследуемо, спрашивай, что не наследуется» - так пишут авторы знаменитой книги «Генетика поведения».

Размещено на Allbest.ru

Подобные документы

    Изучение эксперимента на мухе дрозофиле для исследования наследственности и изменчивости видов. Перепрограммирование соматических клеток. Принцип применения индуцированных плюрипотентных стволовых клеток. Метод переноса ядра соматической клетки в ооцит.

    курсовая работа , добавлен 02.04.2015

    Мейоз как один из ключевых механизмов наследственности и изменчивости. Биологическое значение мейоза: поддержание постоянства кариотипа в ряду поколений, обеспечение рекомбинации хромосом и генов. Законы Грегора Менделя как основа классической генетики.

    презентация , добавлен 15.04.2014

    Элементарная генетическая и структурно-функциональная биологическая система. Клеточная теория. Типы клеточной организации. Особенности строения прокариотической клетки. Принципы организации эукариотической клетки. Наследственный аппарат клеток.

    контрольная работа , добавлен 22.12.2014

    Сущность органоидов, классификация включений цитоплазмы по функциональному назначению. Отличительные особенности растительной и животной клеток, роль ядра в их функционировании. Основные органоиды клетки: комплекс Гольджи, митохондрии, лизосомы, пластиды.

    презентация , добавлен 27.12.2011

    Характеристика жизненного цикла клетки, особенности периодов ее существования от деления до следующего деления или смерти. Стадии митоза, их продолжительность, сущность и роль амитоза. Биологическое значение мейоза, его основные этапы и разновидности.

    лекция , добавлен 27.07.2013

    Строение и функции оболочки клетки. Химический состав клетки. Содержание химических элементов. Биология опухолевой клетки. Клонирование клеток животных. А была ли Долли? Клонирование - ключ к вечной молодости? Культивирование клеток растений.

    реферат , добавлен 16.01.2005

    Химический состав и значение оболочки растительной клетки. Физические свойства цитоплазмы. Структура мембраны клетки, ее мембранные органоиды. Особенности нуклеинового и белкового обмена двумембранных органоидов. Одномембранные и немембранные органоиды.

    презентация , добавлен 08.11.2012

    Ген как последовательность ДНК, несущая информацию об определенном белке. Идентификация генов по кластеру (группе) мутаций. Элементарный фактор наследственности: доминантные и рецессивные признаки. Независимость генов, роль хромосом в наследственности.

    реферат , добавлен 26.09.2009

    Виды и формы клеток. Структурные компоненты клетки. Особенности биологической мембраны. Характеристика цитоплазмы и ее основных органоидов. Функции митохондрий, эндоплазматической сети и аппарата Гольджи. Роль лизосом, центриолей и микротрубочек.

    презентация , добавлен 06.06.2012

    Рассмотрение характеристик клетки как элементарной целостной системы живого организма. Типы клеток животных и растений. Строение и функции мембраны, цитоплазмы, митохондрии, аппарата Гольджи, лизосом, вакуоль, рибосом. Описание органоидов движения.

Понятие о доминантных и рецессивных генах. В ходе своих дальнейших исследований Г. Мендель предоставил растениям второго поколения возможность самоопыляться. Он хотел выяснить, как будет осуществляться наследование признаков в последующих поколениях.

У растений, выросших из семян зеленого цвета, потомство наследовало только зеленую окраску горошин. Однако растения, полученные из желтых семян, вели себя иначе. Из них особей давали в потомстве расщепление в соотношении 3 желтые к 1 зеленой, а в потомстве особей расщепления не было —

все растения имели желтые горошины. Такие же результаты были получены и по другим парам альтернативных признаков. В чем же причина расщепления? Почему при дальнейшем самоопылении снова происходит расщепление в строго определенных соотношениях?

Для объяснения результатов своих наблюдений Г. Мендель выдвинул следующую гипотезу. Альтернативные признаки определяются какими-то наследственными факторами, которые передаются от родителей потомкам с гаметами. Г. Мендель предположил, что доминантный признак обусловлен доминантным фактором, а рецессивный признак — рецессивным фактором. Впоследствии наследственные факторы, ответственные за формирование признаков, стали называть генами. Доминантные гены принято обозначать прописными буквами латинского алфавита (например, Л), рецессивные — строчными (а).

Г. Мендель полагал, что каждому признаку конкретного растения соответствуют два фактора, один из которых получен от отцовского растения, а другой — от материнского. Поэтому в результате моногибридного скрещивания, при котором родители отличались, например, окраской семян, все гибриды первого поколения обладали как наследственным фактором Л (определяющим желтую окраску), так и фактором я (ответственным за зеленый цвет семян). Поскольку фактор Л доминирует над фактором а, у всех гибридов проявилась желтая окраска семян.

Г. Мендель также предположил, что каждый гибрид первого поколения образует два типа половых клеток: половина гамет содержит фактор Л, другая половина — фактор а. Следовательно, парные наследственные факторы при образовании половых клеток разделяются и в каждую гамету попадает какой-либо один из них.

Понятие об аллельных генах. Цитологические основы наследования признаков при моногибридном скрещивании. Только после того как были открыты хромосомы, описано их поведение при митозе и мейозе и доказано, что гены локализованы в хромосомах, предположения Г. Менделя нашли научное подтв ерждение.

Гены, контролирующие различные (альтернативные) формы проявления признака, называются аллелями или аллельными генами. Установлено, что аллельные гены располагаются в одинаковых участках (локусах) гомологичных хромосом. Следовательно, у любого диплоидного организма проявление того или иного признака определяется двумя аллельными генами.

Совокупность всех генов организма называют генотипом. Применительно к отдельному признаку словом «генотип» обозначают сочетание аллельных генов, контролирующих данный признак. Организмы, имеющие одинаковые аллельные гены, называются гомозиготами. Различают доминантные гомозиготы (их генотип можно записать как ЛЛ) и рецессивные гомозиготы (аа). Особи, имеющие разные аллельные гены, называются гетерозиготами, их генотип можно обозначить как Аа.

Гаметы образуются в результате мейоза и содержат гаплоидный набор хромосом. Вспомним, что в анафазе I гомологичные хромосомы, содержащие ал-

лельные гены, расходятся к противоположным полюсам делящейся клетки и в конечном итоге попадают в разные гаметы (рис. 89). Следовательно, два аллельных гена не могут оказаться в одной и той же половой клетке. В каждую гамету попадает лишь один из них.

Предположение о том, что аллельные гены распределяются поровну между половыми клетками, не попадая оба в одну гамету, не разбавляясь и не смешиваясь, английский генетик У Бэтсон в 1909 г. назвал гипотезой чистоты гамет.

Гомозиготные организмы имеют одинаковые аллельные гены, поэтому у них формируется один тип гамет: у особей с генотипом АА все половые клетки содержат ген Л; у организмов с генотипом аа все гаметы содержат гена. Гетерозиготные особи (Ля) образуют два типа гамет в равном со -отношении: 50 % половых клеток содержат аллель Л, 50 % — аллель а.

При оплодотворении гаплоидные гаметы родителей сливаются с образованием диплоидной зиготы. В зиготе хромосомы вновь становятся парными. В каждой паре гомологичных хромосом одна является материнской, а другая — отцовской. Значит, у каждого потомка развитие какого-либо признака будет определяться двумя аллельными генами, причем один из них унаследован от матери, а другой — от отца.

Вернемся к эксперименту, в кото -ром Г. Мендель исследовал наследова-

ние окраски семян гороха. Обозначим доминантный ген, обусловливающий желтую окраску, буквой Л, и рецессивный ген, определяющий зеленую окраску, — я. Поскольку Г. Мендель использовал в качестве родительских форм особи чистых линий, их генотипы следует записать как АА и яя. Оба родителя — гомозиготы, каждый из них производит гаметы лишь одного типа: у особи с генотипом АА формируются только гаметы А, у особи с генотипом яя — гаметы а.

Слияние гамет привело к образованию зигот, из которых развились гибриды первого поколения. Очевидно, что все они имели генотип Аа и желтую окраску семян (доминантный ген полностью подавил проявление рецессивного).

Запишем данное моногибридное скрещивание. Наиболее распространенными формами записи скрещиваний являются генная и хромосомная. В первом случае гены записывают «в строчку», без указания хромосом (например, Ля). Во втором случае при записи генотипов аллельные гены размещают друг над другом, при этом двумя черточками обозначают гомологичные хромосомы, в которых эти гены располагаются (например, =). Здесь и далее используйте одну из форм записи (по указанию учителя).


Совокупность признаков и свойств организма называют фенотипом. Если речь идет о конкретном скрещивании, понятием «фенотип» обозначают тот признак (или признаки), который в этом скрещивании исследуется. Например, в рассмотренном случае можно сказать, что гибриды первого поколения имели одинаковый фенотип — желтый цвет семян.

Гибриды первого поколения — гетерозиготы (Ля), поэтому у них формировалось два типа гамет (Л и я) в равных соотношениях. Слияние гамет носит случайный характер, т. е. любую яйцеклетку может оплодотворить любой сперматозоид (спермий). Поэтому при оплодотворении формировались разные типы зигот: АА, Аа и аа.

Чтобы наглядно показать все варианты слияния гамет и рассчитать вероятность появления потомков с разными генотипами (и фенотипами), можно построить специальную таблицу, называемую решеткой Пеннета (ее впервые предложил использовать английский генетик Р. Пен нет). В решетке Пеннета по горизонтали указывают гаметы одного родителя, а по вертикали — гаметы другого родителя. В клетках на пересечении строк и столбцов записывают генотипы и фенотипы особей, которые возникают при слиянии соответствующих гамет (рис. 90).

Как видно из построенной решетки, у гетерозиготных родительских форм образуются потомки с тремя генотипами в соотношении 1 АА "¦ 2Ля 1яя. Следовательно, расщепление по генотипу составляет 1:2 = 1. Вероятность появления потомства каждого типа можно выразить и в процентах: 25 % АА, 50 % Аа и 25 % аа.

Расщепление по исследуемому признаку таково: особей с желтыми семенами (75 %) и | — с зелеными (25 %). Значит, расщепление по фенотипу составляет 3:1.


Хотя растения с желтыми семенами внешне выглядят одинаково, генетически они неоднородны (АА и Ля). Становятся понятными причины разного «поведения» их потомства в последующих поколениях. При самоопылении среди потомков доминантных гомозигот АА не будет наблюдаться расщепления, как и среди потомков рецессивных гомозигот аа. Гетерозиготные особи Ля будут давать в потомстве расщепление 3:1.

Таким образом, в основе закономерностей, открытых Г. Менделем, лежит поведение гомологичных хромосом в процессе мейоза и случайное слияние (сочетание) гамет при оплодотворении.

1. Какие гены называются аллельными? Где располагаются аллельные гены?

2. Дайте определения понятиям «фенотип», «генотип», «гомозигота», «гетерозигота».

3. Почему тот или иной признак организма в большинстве случаев определяется двумя аллельными генами? Почему при образовании гамет в каждую попадает лишь один аллельный ген из пары?

4. Какие цитологические явления лежат в основе закономерностей, обнаруженных Г. Менделем?

5. У человека карий цвет глаз полностью доминирует над голубым. Возможно ли рождение голубоглазого ребенка в семье, где оба родителя кареглазые? Если возможно, то в каком случае и с какой вероятностью? Если невозможно, то почему?

6. Две серые крысы были скрещены с белым самцом. В потомстве первой самки — 7 серых детенышей, в потомстве второй — 5 белых и 4 серых. Какой цвет шерсти доминирует? Запишите оба скрещивания.

7. Один фермер купил у другого фермера черного барана для своей черной овечьей отары. Через некоторое время он предъявил продавцу претензии, поскольку из 30 родившихся ягнят семеро оказались белыми. На это продавец ответил, что его баран виноват лишь наполовину, а половина вины лежит на овцах покупателя. Владелец овечьей отары с этим не согласился, заявив, что его овцы прежде рожали только черных ягнят. Кто из фермеров прав? Почему овцы рожали только черных ягнят?

    Глава 1. Химические компоненты живых организмов

  • § 1. Содержание химических элементов в организме. Макро- и микроэлементы
  • § 2. Химические соединения в живых организмах. Неорганические вещества
  • Глава 2. Клетка - структурная и функциональная единица живых организмов

  • § 10. История открытия клетки. Создание клеточной теории
  • § 15. Эндоплазматическая сеть. Комплекс Гольджи. Лизосомы
  • Глава 3. Обмен веществ и преобразование энергии в организме

  • § 24. Общая характеристика обмена веществ и преобразование энергии
  • Глава 4. Структурная организация и регуляция функций в живых организмах

Эукариотическая клетка (клетка грибов, растений и животных) является основной единицей живого и способна размножаться, видоизменяться и реагировать на раздражения. Она покрыта цитоплазматической мембраной, которая играет важную роль в регулировании состава клеточного содержимого, так как через нее проникают все питательные вещества и продукты секреции.

Цитоплазма находится внутри цитоплазматической мембраны, но вне ядра и представляет собой гиалоплазму (жидкую часть) и эргастоплазму (органеллы). Органеллы по строению делят на мембранные и немембранные. Мембранами образована эндоплазматическая сеть (ЭПС), заполняющая большую часть цитоплазмы, митохондрии, аппарат Гольджи и лизосомы. Существует два типа ЭПС: гранулярная, к мембранам которой прикреплено множество рибосом - мелких рибонуклеопротеидных частиц, служащих местом синтеза белка, и агранулярная, состоящая из одних только мембран.

Митохондрии – тельца величиной 0,2-5 мкм (микрометров), форма которой варьирует от сферической до палочковидной и нитевидной. Митохондрии сосредоточены в той части клетки, где обмен веществ наиболее и интенсивен. Каждая митохондрия ограничена двойной мембраной; внешний слой мембраны образует гладкую наружную поверхность, а от внутреннего слоя отходят многочисленные складки – кристы. Кристы содержат ферменты, участвующие в системе переноса электронов, которая играет важнейшую роль в превращении энергии питательных веществ в биологически полезную энергию, необходимую для осуществления клеточных функций. Полужидкое внутреннее содержимое митохондрии – матрикс – тоже содержит ферменты. Митохондрии, главная функция которых состоит в вырабатывании энергии, образно называют электростанциями клетки.

Комплекс Гольджи – компонент цитоплазмы, встречающийся почти во всех клетках, кроме зрелых спермиев и красных кровяных телец (эритроцитов), - представляет собой неупорядоченную сеть канальцев, выстланных мембранами. Обычно он расположен около ядра и окружает центриоли (немембранные органеллы цитоплазмы, играющие важную роль в клеточном делении, образуя веретено деления). Комплекс Гольджи служит местом временного хранения веществ, вырабатываемых в гранулярной эндоплазматической сети, а канальцы комплекса соединены с плазматической мембраной.

Лизосомы – группа внутриклеточных органелл, встречающихся в животных клетках, сходны по величине с митохондриями и представляют собой ограниченные мембраной тельца, которые содержат разнообразные ферменты, способные гидролизовать макромолекулярные компоненты клетки. В случае проникновения в клетку чужеродной ДНК (вируса) лизосомы выделяют в цитоплазму ферменты, расщепляющие ДНК, - нуклеазы, и тем самым выполняют защитную функцию.

Каждая клетка содержит ядро, которое служит важным регулирующим центром клетки. Ядро содержит наследственные факторы (гены), определяющие признаки данного организма, и управляет многими внутриклеточными процессами. Ядерная оболочка (кариолемма) окружает ядро и отделяет его от цитоплазмы и регулирует движение веществ из ядра и в ядро. Ядерный сок (кариоплазма) – полужидкое основное вещество ядра, в котором размещается строго определенное число нитевидных образований, называемых хромосомами. Хромосомы имеют продолговатую форму, состоят из двух хроматид с расположенной в том или ином участке перетяжкой - центромерой. Центромера делит хромосому на две части, называемые плечами хромосомы. Встречаются равноплечие хромосомы (метацентрические), неравноплечие (субметацентрические, акроцентрические). Длина хромосомы варьирует от 1 до 30 мкм. Более чем половину всей массы хромосомы составляет белок гистон, обладающий щелочными свойствами вследствие высокой концентрации в нем аминокислот аргинина и лизина. Хромосома содержит некоторое количество белка, имеющего кислотные свойства. ДНК и РНК содержатся в хромосомах в небольших, но измеримых количествах.

Гистон и ДНК объединены в структуру, называемую хроматиновой нитью, которая представляет собой двойную спираль ДНК, окружающую гистоновый стержень; она построена из повторяющихся единиц (нуклеосом), в каждую из которых входят примерно 200 пар оснований ДНК и по две молекулы каждого из четырех гистонов.

Хроматиновая нить обычно образует спираль диаметром около 25 мкм. По способности окрашиваться ядерными красителями хроматиновые нити подразделяют на две группы: эухроматин и гетерохроматин. Последний окрашивается более интенсивно.

Перед началом клеточного деления большая часть хроматина уплотняется, образуя хромосомы. Число хромосом в клеточных ядрах всех особей какого-либо вида постоянно и представляет собой один из его признаков. Зигота содержит диплоидный набор хромосом. Одинарный набор хромосом называют геномом. Набор хромосом, свойственный тому или иному виду животных называют кариотипом. Различают пары аутосом и последнюю пару половых хромосом.

В ядре находится сферическое тельце (одно или несколько), называемое ядрышком. Ядрышки исчезают, когда клетка готовится к делению, а затем появляются вновь. В ядрышках синтезируется рРНК (рибосомальная рибонуклеиновая кислота), из которой формируются частицы рибосом.

Митоз

Митоз – это непрямое деление соматических клеток, при котором каждая из двух дочерних клеток получает такое же количество и те же типы хромосом, какие имела материнская клетка. Промежуток времени между окончанием одного клеточного деления и окончанием последующего называют митотическим циклом, который подразделяется на митоз и интерфазу. Интерфаза включает тир периода. В первом периоде интерфазы, идущим вслед за прошедшим митозом и обозначаемой G1 (пресинтетическая фаза), осуществляется синтез белков иРНК. Затем следует период синтеза ДНК (фаза S - синтетическая), в течение которого количество ДНК в ядре клетки удваивается. В постсинтетический период (фаза G2) происходит синтез РНК и белков (в особенности ядерных) и накапливается энергия для следующего митоза.

Митоз делится на четыре стадии: профазу, метафазу, анафазу и телофазу. В первой стадии митоза – профазе – происходит формирование хромосом. Каждая хромосома состоит из двух хроматид, спирально закрученных друг относительно друга. Хроматиды утолщаются и укорачиваются в результате процесса внутренней спирализации.

Начинает выявляться слабо окрашенная и менее конденсированная область хромосомы – центромера. Во время профазы ядрышки постепенно уменьшаются в размерах, пока в конце концов их материал не диспергируется. Ядерная оболочка также распадается, и хромосомы оказываются в цитоплазме. В это время центриоль делится и дочерние центриоли расходятся в противоположные концы клетки. От каждой центриоли отходят тонкие нити в виде лучей; между центриолями формируются нити веретена деления. После разрушения ядерной оболочки каждая хромосома прикрепляется к нитям веретена при помощи своей центромеры.

Хромосомы выстраиваются в плоскости экватора, образуя метафазную пластинку, и начинается следующий период митоза – метафаза. Центромера делится, и хроматиды превращаются в две совершенно обособленные дочерние хромосомы. Деление центромер происходит одновременно во всех хромосомах.

Центромеры расщепляются и это уже начало анафазы. Выстроившись вдоль экватора хромосомы (сестринские хроматиды) тот час же начинают расходиться к разным полюсам клетки.

Телофаза начинается с момента достижения хромосомами полюсов. Хромосомы возвращаются в состояние, при котором видны лишь хроматиновые нити или гранулы; вокруг каждого дочернего ядра образуется ядерная оболочка. На этом завершается деление ядра, называемое кариокинезом, за которым следует деление тела клетки, или цитокинез.

У большинства типов клеток весь процесс митоза занимает один-два часа. Регулярный и упорядоченный митотический процесс обеспечивает передачу генетической информации каждому из дочерних ядер; в результате каждая клетка содержит генетическую информацию обо всех признаках организма.

Мейоз

Мейоз (от греч. уменьшение) был открыт В.Флеммингом у животных в 1882 году. Мейоз – это уменьшительное деление половых клеток (яйцеклеток и сперматозоидов). Мейоз состоит из двух клеточных делений, при которых число хромосом уменьшается вдвое, так что гаметы получают вдвое меньше хромосом, чем другие клетки тела. Отличительной особенностью первого деления мейоза является сложная и сильно растянутая по времени профаза I, в которой выделяют пять стадий: лептотена, зиготена, пахитена, диплотена и диакинез. Лептотена (стадия тонких нитей) – начало конденсации хромосом, в целом напоминает раннюю профазу митоза, отличаясь более тонкими хромосомами и крупными ядрами. Зиготена (стадия сливающихся нитей) – сближение и начало коньюгации (попарного временного сближения гомологичных хромосом, при котором возможен обмен их гомологичными участками – кроссинговер) гомологичных (сходных) хромосом; к концу ее все гомологи объединяются в биваленты (двойни гомологичных хромосом). В пахитене (стадия толстых нитей) происходит кроссинговер. Диплотена (стадия двойных нитей, или стадия четырех хроматид) начинается взаимным отталкиванием гомологов и появлением хиазм (места соединения хроматид разных хромосом); у подавляющего большинства организмов в диплотене происходит дальнейшая спирализация хромосом и редукция числа ядрышек. Завершается обмен гомологичными участками хроматид. Для диакинеза (стадия обособления двойных нитей) характерны уменьшение числа хиазм и значительная компактность бивалентов. Биваленты гомологичных хромосом отходят к периферии ядра, так, что их легко подсчитать. На этом завершается профаза I.

Метафаза I начинается с момента исчезновения ядерной оболочки. Биваленты располагаются в экваториальной плоскости клетки. Формируется веретено деления.

В анафазе I начинается движение гомологичных хромосом к полюсам клетки. То есть именно в анафазе происходит редукция – сокращение числа хромосом.

Телофаза I характеризуется обособлением двух дочерних ядер. Ее нередко рассматривают как состояние покоя между двумя делениями мейоза интеркинез.

Второе деление мейоза происходит в обоих дочерних ядрах так же, как и в митозе. Моновалентные хромосомы (каждая из которых состоит из двух хроматид) сокращаются (профаза II) и ориентируются по экватору (метафаза II). Возникает веретено деления из ахроматиновых нитей. В стадии анафазы II хроматиды отделяются друг от друга и быстро расходятся к разным полюсам. В телофазе II происходят образование ядер, деспирализация хромосом. В результате двух последовательных делений мейоза из одной исходной диплоидной клетки образуются 4 гаплоидные генетически разнородные клетки.

Гаметогенез

Гаметогенез – это развитие половых клеток (гамет). Сперматогенез – развитие мужских гамет (спермиев). Оогенез – развитие женских гамет (яйцеклеток). Диплоидные клетки, из которых развиваются гаметы, называют оогониями и сперматогониями. Их быстрая пролиферация (разрастание) путем митоза приводит к образованию огромного количества клеток (ооцитов и сперматоцитов).

В сперматогенезе различают четыре периода: размножения, роста, созревания и формирования. В первом периоде диплоидные клетки – сперматогонии несколько раз делятся путем митоза и в последней интерфазе (премейотической) в них происходит репликация ДНК. Во втором периоде они растут и называются сперматоцитами 1-го порядка; ядро их проходит длинную профазу мейоза, во время которой совершается коньюгация гомологичных хромосом, кроссинговер и образуются биваленты. В третьем периоде происходят два последовательных деления созревания, или мейотических деления. В результате первого деления из каждого сперматоцита 1-го порядка образуются два сперматоцита 2-го порядка, а после второго деления – четыре одинаковые по размерам сперматиды; при этих делениях происходит уменьшение (редукция) числа хромосом вдвое. Сперматиды вступают в четвертый период формирования и превращаются в спермии. В результате сперматогенеза из одной диплоидной сперматогонии образуется четыре гаплоидных спермия. Сперматогенез совершается у большинства видов животных в семенных канальцах семенника.

Оогенез состоит из трех периодов: размножения, роста и созревания. В период размножения путем митозов увеличивается число диплоидных половых клеток оогоний; после прекращения митозов и репликации ДНК в премейотической интерфазе они вступают в профазу мейоза, совпадающую с периодом роста клеток, называемых ооцитами 1-го порядка. В начале периода роста (фаза медленного роста, или превителлогенез) ооцит 1-го порядка увеличивается незначительно, в его ядре происходят коньюгация гомологичных хромосом и кроссинговер. Эта фаза у ряда животных может длиться годами. В фазе быстрого роста (вителлогенеза) увеличивается объем ооцитов 1-го порядка за счет накопления рибосом и желтка. В период созревания происходят два деления мейоза; в результате первого деления образуется небольшое полярное тельце и крупный ооцит 2-го порядка. К концу периода созревания, ооциты преобретают способность оплодотворяться, а дальнейшее деление их ядер блокируется. Мейоз завершается выделением второго полярного тельца и образованием гаплоидной яйцеклетки из ооцита 2-го порядка. Полярные тельца впоследствии дегенерируются. В результате оогенеза из одной диплоидной оогонии образуются 3 направительные тельца и одна яйцеклетка с гаплоидным набором хромосом.

Оплодотворение – это слияние мужской половой клетки с женской с образованием зиготы. Самое главное в процессе оплодотворения – это слияние мужского и женского пронуклеусов. Оплодотворение – процесс видоспецифичный, то есть спермии одного вида организмов, как правило, не оплодотворяют яйца другого вида. В яйцеклетку из спермия проникает только ядро и одна из центриолей.

Спермий стимулирует яйцо к развитию; вносит гаплоидный набор хромосом в качестве отцовского генетического вклада во вновь формирующуюся зиготу; вносит в яйцо центриоль, участвующую в механизме клеточного деления (образование веретена деления).

ЛЕКЦИЯ №2

УЧЕБНО-МЕТОДИЧЕСКАЯ КАРТА

Теоретического занятия

Специальность 34.02.01. «Сестринское дело»

ОП. 04. Генетика человека с основами медицинской генетики

Тема Законы наследования признаков

Тип занятия Урок изучения новых знаний

Форма проведения Теоретическое занятие, лекция

(структура занятия)

План

1. Гибридологический метод изучения наследственности.

2. Наследственность и ее материальные носители.

3. Цитологические и биохимические основы наследственности.

4. Взаимодействие аллельных и неаллельных генов.

5. Генотип. Фенотип.

6. Первый закон Г. Менделя

7. Второй закон Г.Менделя.

8. Неполное доминирование. Кодоминирование. Анализирующее, возвратное и реципрокные скрещивания.

9. Дигибридное и полигибридное скрещивания. Третий закон Г.Менделя.

Цитологические основы наследственности

Развитие клеточной теории во второй половине XIX века создало предпосылку для признания законов Менделя. Именно клеточная теория обосновала роль ядра в наследственности.

В 1855 году Р. Вирхов выдвинул фундаментальное положение Omnis Cellula e Cellulae -всякая клетка от клетки, т.е. положение о самовоспроизведении клетки.

Началось детальное изучение процесса клеточного деления, или митоза \ В. Флеминг \.

В. Флеминг обнаружил, что при митозе хромосомы делятся вдоль, а Е. Ван. Бенеден 1883 г. обратил внимание на то, что дочерние хромосомы до мельчайших подробностей повторяют строение материнской хромосомы.

Термин хромосома был введен в 1883 г. В. Вальдейером.

В 1884 г. Э. Страсбургер выделил такие стадии митоза как профаза и метафаза. Именно в этот период сформировалась ядерная гипотеза наследственности - В. Ру, 1883, Э. Страсбургер, 1884 г.

Считается, что цитогенетика как наука начала обосабливаться с 1896 г. после выхода в свет работы Э. Вильсона « Клетка в развитии и наследственности».

За прошедший период цитология добилась значительных успехов, в ней используются методы других смежных наук. В генетике цитологический метод широко используется для непосредственного изучения клеточных структур – носителей наследственной информации « ядро, органеллы цитоплазмы. Участки хромосомы, где происходит синтез рРНК, ядерных белков- гистонов называются организаторами ядрышка2 Клеточный цикл

Существование клетки от деления до деления или смерти - жизненный цикл клетки. У одноклеточных жизненный цикл совпадает с жизнью особи. У многоклеточных жизненный цикл состоит из 4 периодов. Первые три - интерфаза:G1- пресинтетический или постмитотический от англ. –grow (grou)- расти. В эту фазу происходит активный рост и функционирование клеток, обусловленные возобновлением транскрипции и накоплением синтезированных белков а так же подготовка к синтезу Д Н К.

В S-(synthesis) фазе происходит репликация Д Н К и удвоение материала хромосом

В G2 фазе осуществляется подготовка клеток к делению, в т. ч. синтез белков веретена деления. В результате заключительного этапа клеточного цикла – митоза редуплицированные хромосомы расходятся в дочерние клетки.

Продолжительность клеточного цикла от 10 до 50 часов и зависит от типа клеток, их возраста, гормонального баланса организма, количества Д Н К в ядре, температуры, времени суток и др. факторов.

Наиболее вариабельны G1 и G2 фазы, они могут значительно удлиняться в особенности у так называемых покоящихся клеток, в этом случае выделяют G0 период (от англ. Gap - промежуток, интервал) или период покоя. С учетом этого периода клеточный цикл может длиться недели, месяцы (у клеток печени), а у нейронов к. ц. равен продолжительности жизни организма.

Для клеток млекопитающих в культуре ткани G1 =10; S=9; G2=4; митоз- 1 час, всего 24 часа. Набор хромосом в G1-диплоидный, S- тетраплоидный обратимый, G2- диплоидный, а затем митоз.

Передача наследственной информации в процессе деления клеток и при оплодотворении:

Митоз представляет собой способ упорядоченного деления клетки, при котором каждая из двух дочерних клеток получает такое же число и те же типы хромосом, какие имела материнская клетка. Митотическое деление представляет собой непрерывный процесс, каждая стадия которого незаметно переходит из одной в другую. Для удобства принято подразделять митоз на четыре стадии: профазу, метафазу, анафазу и телофазу.

Профаза: Происходит формирование хромосом. За счет спирализации длина хромосом уменьшается примерно в 25 раз, разрушается ядрышко, ядрышковое вещество участвует в образовании веретена деления. Центросома делится на дочерние центриоли между которыми формируются нити веретена деления. Ядерная оболочка разрушается.

Метафаза: короткий промежуток времени, в течение которого хромосомы находятся в плоскости экватора. Центромера делится, и хроматиды превращаются в две совершенно обособленные дочерние хромосомы.

Анафаза: деление центромер происходит одновременно во всех хромосомах. Выстроившись вдоль экватора, хромосомы тотчас же начинают расходиться, причем каждая сестринская хроматида отходит к одному из полюсов. Природа механизма заставляющего хромосомы двигаться к полюсам, пока неизвестна.

Телофаза начинается с момента достижения хромосомами полюсов происходит их деспирализация. Вокруг каждого дочернего ядра образуется ядерная оболочка. После деления клетки происходит синтез ДНК, формируется вторая хроматида. Что приводит к удвоению хромосом.

Генетическая сущность митоза заключается в равномерном распределении генетического материала материнской клетки между дочерними клетками. Генетическая изменчивость не меняется. Изменчивость может измениться при воздействии соматических мутаций или соматического кроссинговера.

Патология митоза: задержка митоза в профазе, нарушение спирализации деспирализации хромосом, раннее расделение хроматид, фрагментация или пульверизация хромосом, задержка митоза в метафазе

Причины: воздействие химических веществ, радиации, вирусных инфекций. Например, при чуме у свиней наблюдается пульверизация и фрагментация хромосом.

Мейоз: постоянство числа хромосом в последовательных поколениях обеспечивается процессом мейоза. Мейоз(от греч. Meiosis – уменьшение) по существу состоит из двух клеточных делений при которых число хромосом уменьшается в двое, так что гаметы получают вдвое меньше хромосом чем соматические клетки. Диплоидное число хромосом восстанавливается при оплодотворении. Уменьшение числа хромосом происходит не беспорядочно, а закономерно, путем попарного соединения гомологичных хромосом и последующего расхождения членов пары к одному из полюсов.

Процесс мейоза заключается в двух, следующих одно за другим клеточных делениях, называемых соответственно первым или редукционным и вторым –эквационным. Репликация хромосом происходит в период S фазы интерфазы. В редукционном делении уменьшается вдвое число хромосом и центромер, однако, каждая центромера прикреплена к дуплицированной хромосоме. Во втором мейотическом делении центромеры делятся, а каждая дуплицированная хромосома превращается в пару самостоятельных хромосом. В каждом мейотическом делении различают профазу, метафазу, анафазу и телофазу как в митозе.

Профаза первого мейотического деления наиболее продолжительная и делится на несколько стадий…

В стадии зигонемы (соединение нитей) тонкие нити конъюгируют друг с другом (синапсис) Конъюгация отличается высокой точностью. Образуются биваленты.

Стадия пахинемы (толстые нити) происходит кроссинговер.

Стадия диплонемы или стадия четырех хроматид. Каждая из гомологичных хромосом бивалента расщепляется на две хроматиды, которые полностью не разъединяются. Места соединения хроматид называются хиазмами, которые удерживают моноваленты вместе. Завершается обмен гомологичными участками хромосом.

Стадия диакинеза характеризуется максимальным укорочением диплотенных хромосом. Биваленты отходят к периферии ядра, легко подсчитываются. На этом завершается профаза 1.

В метафазе 1 исчезает ядерная оболочка, биваленты располагаются в экваториальной плоскости клетки, формируется веретено деления.

В анафазе 1 гомологичные хромосомы расходятся к разным полюсам в отличие от митоза к полюсам отходят хромосомы, состоящие из двух хроматид, именно в анафазе происходит редукция – сокращение хромосом

Телофаза 1 весьма кратковременна, слабо обособлена от анафазы, образуются два дочерних ядра. Её нередко рассматривают как состояние покоя между двумя делениями мейоза-интеркинез.

Второе деление мейоза – эквационное происходит в обоих дочерних ядрах, так же как и в митозе. Образовавшиеся четыре клетки имеют гаплоидный набор хромосом

Патология мейоза. Основная причина – нерасхождение хромосом: первичное, анафаза 1 – нарушается разделение бивалентов и обе хромосомы из пары аналогов не переходят в одну клетку (п. 1) и недостатку в другой (п – 1)

Вторичное – возникает в гаметах у особей с избытком (трисомией) одной хромосомы в результате образуются и биваленты и униваленты.

Третичное – у особей со структурной перестройкой хромосом (транслокации)

Биологическая роль мейоза: Механизм поддержания видового постоянства числа хромосом, обеспечивает генетическую разнородность гамет благодаря случайной комбинации материнских и отцовских хромосом, вызывает образование хромосом нового генетического состава благодаря кроссинговеру, что приводит к изменению наследственной изменчивости.

Гаметогенез. Гаметы у животных образуются в особых органах – гонадах. Диплоидные клетки, из которых образуются гаметы, называют оогониями и сперматогониями. Их быстрое размножение путем митоза приводит к образованию огромного количества клеток. Клетки растут, причем ооциты 1 порядка достигают значительно больших размеров, чем сперматоциты 1 порядка. Затем одно за другим происходят два деления созревания: сначала редукционное, а затем эквационное в результате образуются сперматоциты и ооциты 11 порядка. В результате делений созревания образуются четыре гаплоидных клетки. Сперматиды – одинаковы по размерам, а у особей женского пола продукты деления созревания неравноценны: ооцит первого порядка, отделяя направительное тельце (полярное), превращается в ооцит второго порядка а тот, в свою очередь, отделяет еще одно полярное тельце и становится крупным, богатым цитоплазмой зрелым яйцом. Образовавшиеся полярные тельца в дальнейшем развитии не участвуют

Строение хромосом, кариотипы.

Морфологию хромосом, как правило, описывают на стадии метафазы или анафазы, когда они лучше всего видны в клетке. Хромосомы состоят из хроматина, который содержит Д Н К (40 %), гистоны (40 %), не гистоновые хромосомные белки (20 %) и не большое количество Р Н К.

Гистоны – хромосомные основные белки с высоким содержанием аргинина и лизина. Гистоны прочно соединяются с молекулами ДНК, чем препятствуют считыванию заключенной в ней наследственной информации. В этом состоит их регуляторная роль. Они выполняют структурную функцию, обеспечивая пространственную организацию ДНК в хромосомах.

Негистоновые хромосомные белки главным образом кислотные белки. Среди них ферменты синтеза и процессинга РНК, редупликации репарации ДНК.

Гистоны и ДНК объединены в структуру, которая называется хроматиновой нитью (хроматида), которая представляет собой двойную спиральДНК, окружающую гистоновый стержень. Каким именно образом двойная спираль располагается вокруг гистонов, пока не ясно.

В определении формы хромосом большое значение имеет положение ее обязательного элемента – центромеры, которая делит хромосому на две части (плечи). В зависимости от положения центромеры различают: метацентрические (равноплечие), субметацентрические (неравноплечие), акроцентрические – центромера расположена очень близко к одному из концов хромосомы, телоцентрические –центромера расположена на самом конце хромосомы (одноплечие). При описании хромосом короткое плечо обозначают буквой p, а длинное - g . Объективным критерием для отнесения хромосом к той или иной группе служит центромерный индекс – отношение длины короткого плеча к длине хромосомы в процентах. У акроцентрических хромосом центромерный индекс менее-12,5 %, субметацентрических от12,6до 37, метацентрических – от 37,6 до 50 %. К морфологической характеристике относят наличие у хромосом вторичных перетяжек, соответствующих зонам ядрышковых организаторов. В таких вторичных перетяжках локализуются гены, ответственные за синтез рРНК. Синтез и созревание рРНК происходит в ядрышках. Цетромера имеет сложное строение, в ней находится ДНК с характерной последовательностью нуклеотидов. Хромосомы обычно имеют одну центромеру. Её потеря производит к нарушению подвижности и потере хромосомы. Известны виды с полицентрическими хромосомами, с так называемой диффузной центромерой. У этих видов даже фрагменты разорванных хромосом благополучно расходятся к полюсам.

Теломеры или концевые участки хромосом в значительной мере ответственны за существование хромосом как индивидуальных образований, они препятствуют слипанию хромосом.

Хромосомы идентифицируют по ряду дополнительных признаков – спутникам (сателлитам), различным методам дифференциальной окраски, выделяя более темные (гетерохроматиновые) и более светлые (эухроматиновые) участки. В гетерохроматиновых участках хромосомы более спирализованы чем в эухроматиновых. Гетерохроматиновые участки функционально менее активны. Характер распределения эухроматиновых и гетерохроматиновых участков постоянен для каждой хромосомы.

Кариотипы. В 1924 г. Г. А. Левитский создал учение о кариотипах согласно которому клетки каждому виду организмов характеризуются наличием определенной и постоянной совокупности индивидуализированных хромосом. Кариотип – набор хромосом соматической клетки, свойственный тому или иному виду животных или растений. Зигота содержит диплоидный набор хромосом, одинарный набор хромосом – геном.

Кариограмма – фотографии хромосом организма, систематизированные по группам в зависимости от морфологического строения.

Идиограмма – графическое изображение хромосом с учетом их морфологических деталей.

Число хромосом в кариотипе не зависит от уровня организации животных и растений (lim 2 – 1200).

Оплодотворение и избирательность оплодотворения изучить самостоятельно.

Биохимические основы наследственности

Несмотря на то, что ДНК была известна с 1869 г. и наличие её в хромосомах было хорошо доказано, эту молекулу считали слишком простой для передачи наследственной информации. Лишь после открытия в 1953 г. физико-химической структуры ДНК Дж. Уотсоном и Ф. Криком стало окончательно ясно, что передача наследственной информации осуществляется с помощью ДНК.

Нуклеиновая кислота представляет собой гигантскую молекулу, построенную из многих повторяющихся единиц, называемых нуклеотидами. Нуклеотид состоит из азотистого основания, сахара и остатка фосфорной кислоты. Азотистые основания представлены двумя пуриновыми производными – аденином (А) и гуанином (Г), и тремя пиримидиновыми – цитозином (Ц), тимином (Т) и урацилом (У).

В состав ДНК входят А, Г, Ц, Т; в РНК – А, Г, Ц. А тимин здесь заменён на урацил.

Сахар , входящий в состав нуклеотида, содержит пять углеродных атомов, т.е. представляет собой пентозу . В зависимости от вида пентозы, присутствующей в нуклеотиде, различают 2 типа нуклеиновых кислот – дезоксирибонуклеиновую (ДНК) и рибонуклеиновую (РНК). В нуклеотидах к молекуле дезоксирибозы (или рибозы) с одной стороны присоединено азотистое основание , а с другой – остаток фосфорной кислоты . Согласно предложенной Дж. Уотсоном и Ф. Криком модели, молекула ДНК представляет собой две параллельные полинуклеотидные цепи, закрученные в двойную спираль. Пространственная структура ДНК удерживается множеством водородных связей, которые возникают между пуриновым основанием одной цепи и пиримидиновым основанием другой цепи. Эти основания составляют комплементарные пары: А=Т, Г=Ц .

В отличие от ДНК молекулы РНК , ка правило, однонитевые. Построены они аналогично нитям ДНК, только в сахарно-фосфатный остов их молекул входит не дезоксирибоза, а рибоза, и вместо тимина у них имеется урацил. В зависимости от функций, все РНК могут быть разделены на несколько классов: информационная (и-РНК), или матричная (м-РНК) около 5%; транспортная (т-РНК) около 15%; рибосомальная (р-РНК) около 80%

Каждая молекула РНК выполняет свою специфическую функцию : м-РНК переносят информацию о структуре белка от ДНК к рибосомам, т.е. служат матрицей для синтеза белка; т-РНК переносят аминокислоты в рибосомы; р-РНК образуют в комплексе с белками рибосому, сложную органеллу, в которой происходит синтез белка.

Функции нуклеиновых кислот.

Нуклеиновые кислоты выполняют важнейшие биологические функции. В ДНК хранится наследственная информация о всех свойствах клетки и организма в целом. Различные виды РНК принимают участие в реализации наследственной информации через синтез белка. Элементарной единицей наследственности является ген. Ген – это участок молекулы ДНК, характеризуемый специфической для него последовательностью нуклеотидов, и способный изменяться путём мутирования. Молекула ДНК может содержать множество генов.

У человека имеется около 30-40 тыс. генов, каждый из которых выполняет специфическую функцию – кодирует определенный полипептид. Каждая исходная молекула ДНК даёт начало огромному числу новых молекул ДНК. Это происходит в процессе репликации, при которой информация, закодированная в родительской ДНК, передаётся с максимальной точностью дочерней ДНК.

Репликация – единственно возможный способ увеличения числа молекул ДНК, с помощью фермента ДНК-полимеразы разрываются слабые водородные связи между двумя цепями ДНК, образуются одноцепочечные нити. Затем к каждой цепочке достраиваются по принципу комплементарности нуклеотиды (А-Т, Г-Ц), образуя две двухцепочечные молекулы ДНК. Процесс репликации нуклеиновых кислот целиком зависит от работы ряда ферментов: ДНК-полимеразы, РНК-полимеразы, эндонуклеазы и ДНК-лигазы. Кроме механизма, обеспечивающего сохранение генетической информации (репликация), и материальной единицы наследственности (ген), существует механизм реализации наследственной информации.

Генетическая информация реализуется через следующие этапы : Транскрипция («переписывание) – перенос генетической информации от ДНК в РНК. Транскрипция заключается в том, что на одной из нитей ДНК происходит матричный синтез нити м-РНК. Этот синтез осуществляется особым ферментом – РНК-полимеразой, который прикрепляется к началу участка ДНК, расплетает двойную спираль ДНК и, перемещаясь вдоль одной из нитей, последовательно строит рядом с ней комплементарную ей нить РНК. Синтезированная нить РНК содержит информацию, точно переписанную с соответствующего участка ДНК. В ядре и при выходе из него происходит процессинг – дозревание РНК (вырезание неинформативных участков), в результате чего РНК укорачивается. Далее молекулы РНК выходят из ядра в цитоплазму и соединяются с рибосомами, где происходит процесс трансляции.

Трансляция (перевод) – процесс декодирования, в результате которого информация с языка м-РНК переводится на язык аминокислот. Центральное место в трансляции принадлежит рибосамам. Рибосома образована двумя субъединицами – большой и малой, состоящими из р-РНК и белков. Аминокислоты, синтезированные клеткой, доставляются к месту сборки из них белка, т.е. рибосомы, посредством т-РНК. Каждой аминокислоте в м-РНК соответствует определенная тройка (триплет) нуклеотидов, называемая кодоном этой аминокислоты. В м-РНК существуют кодоны: инициирующие (АУГ), определяющие начало синтеза белка; терминирующие (стоп-кодон: УАГ, УАА, УГА), заканчивающие синтез белка. Сигналом к завершению трансляции служит один из трех стоп-кодонов. Генетическая информация, содержащаяся в ДНК и м-РНК, заключена в последовательности расположения нуклеотидов в молекулах. Перенос информации с языка нуклеотидов на язык аминокислот осуществляется с помощью генетического кода. Генетический код – это система записи информации о последовательности расположения нуклеотидов в ДНК и и-РНК. Свойства генетического кода: Код триплетен. Каждая аминокислота кодируется группой из трёх нуклеотидов (тирозин – УАУ)

Вырожденность генетического кода.

Одна аминокислота может кодироваться не одним, а несколькими триплетами нуклеотидов (валин – ГУУ, ГУЦ, ГУА) Однозначность генетического кода (специфичность). Каждому кодону соответствует только одна аминокислота, т.е. триплет шифрует только одну аминокислоту (триптофан – УГГ) Неперекрываемость генетического кода. Каждый нуклеотид входит лишь в какой-либо один триплет и переписывание информации происходит строго потриплетно. Универсальность генетического кода. Генетическая информация для всех организмов, обладающих разным уровнем организации (от ромашки до человека), кодируется одинаково. Линейность генетического кода. Кодоны прочитываются линейно (последовательно) в направлении закодированной записи.

Гибридологический метод изучения наследственности

Одним из основных методов генетики является гибридологический метод. Гибридизация (от лат. hibrida – помесь) – скрещивание особей, различающихся по одному или нескольким признакам. Дочерние организмы, получаемые в ходе гибридизации, называются гибридами .

Если исходные родительские формы отличаются друг от друга одной парой признаков, то такое скрещивание называется моногибридным (от греч. монос – один и лат. hibrida ). Если исходные родительские формы отличаются двумя парами признаков, то речь идет о дигибридном скрещивании (от греч. ди – приставка, обозначающая дважды, двойной и лат. hibrida ), а если тремя и более признаками, то говорят о полигибридном скрещивании (от греч. полис – много и лат. hibrida ).