Почему волны на море

  • 14.10.2019

Волны, которые мы привыкли видеть на поверхности моря, образуются главным образом под действием ветра. Однако волны могут возникать и по другим причинам, тогда они называются;

Приливные, образующиеся под действием приливообразующих сил Луны и Солнца;

Барические, возникающие при резких изменениях атмосферного давления;

Сейсмические (цунами), образующиеся в результате землетрясения или извержения вулканов;

Корабельные, возникающие при движении судна.

Ветровые волны являются преобладающими на поверхности морей и океанов. Волны приливные, сейсмические, барические и корабельные существенного влияния на плавание судов в открытом океане не оказывают, поэтому на их описании мы останавливаться не будем. Ветровое волнение - один из основных гидрометеорологических факторов, определяющих безопасность и экономическую эффективность мореплавания, так как волна, набегая на судно, обрушивается на него, раскачивает, бьет в борт, заливает палубы и надстройки, уменьшает скорость хода. Качка создает опасные крены, затрудняет определение места судна и сильно изнуряет команду. Кроме потери скорости, волнение вызывает рыскание и уклонение судна с заданного курса, и для удержания его требуется постоянная перекладка руля.

Ветровым волнением называется процесс формирования, развития и распространения вызванных ветром волн на поверхности моря. Ветровому волнению присущи две основные черты. Первая черта - нерегулярность: неупорядоченность размеров и форм волн. Одна волна не повторяет другую, за большой может следовать малая, а может и еще большая; каждая отдельная волна непрерывно меняет свою форму. Гребни волн перемещаются не только в направлении ветра, но и в других направлениях. Такая сложная структура возмущенной поверхности моря объясняется вихревым, турбулентным характером ветра, образующего волны. Вторая черта волнения заключается в быстрой изменчивости его элементов во времени и пространстве и связана также с ветром. Однако размеры волн зависят не только от скорости ветра, существенное значение имеет продолжительность его действия, площадь и конфигурация водной поверхности. С точки зрения практики нет необходимости знать элементы каждой отдельно взятой волны или каждого волнового колебания. Поэтому изучение волнения сводится в конечном итоге к выявлению статистических закономерностей, которые численно выражаются зависимостями между элементами волн и определяющими их факторами.

3.1.1. Элементы волн

Каждая волна характеризуется определенными элементами,

Общими элементами для волн являются (рис. 25):

Вершина - наивысшая точка гребня волны;

Подошва - наинизшая точка ложбины волны;

Высота (h) - превышение вершины волны;

Длина (Л)-горизонтальное расстояние между вершинами двух смежных гребней на волновом профиле, проведенном в генеральном направлении распространения волн;

Период (т) - интервал времени между прохождением двух смежных вершин волн через фиксированную вертикаль; другими словами, это промежуток времени, в течение которого волна проходит расстояние, равное своей длине;

Крутизна (е) - отношение высоты данной волны к ее длине. Крутизна волны в различных точках волнового профиля различна. Средняя крутизна волны определяется отношением:

Рис. 25. Основные элементы волн.


Для практики важное значение имеет наибольший уклон, который приближенно равен отношению высоты волны h к ее полудлине λ/2


- скорость волны с - скорость перемещения гребня волны в направлении ее распространения, определяемая за короткий интервал времени порядка периода волны;

Фронт волны - линия на плане взволнованной поверхности, проходящая по вершинам гребня данной волны, которые определяются по множеству волновых профилей, проведенных параллельно генеральному направлению распространения волн.

Для мореплавания наибольшее значение имеют такие элементы волн, как высота, период, длина, крутизна и генеральное направление перемещения волн. Все они зависят от параметров ветрового потока (скорости и направления ветра), его протяженности (разгона) над морем и продолжительности его действия.

В зависимости от условий образования и распространения ветровые волны можно подразделить на четыре типа.

Ветровые - система волн, находящаяся в момент наблюдения под воздействием ветра, которым она вызвана. Направления распространения ветровых волн и ветра на глубокой воде обычно совпадают или же различаются не более чем на четыре румба (45°).

Ветровые волны характерны тем, что подветренный склон их круче, чем наветренный, поэтому верхушки гребней обычно заваливаются, образуя пену, или даже срываются сильным ветром. При выходе волн на мелководье и подходе их к берегу направления распространения волн и ветра могут различаться более чем на 45°.

Зыбь - вызванные ветром волны, распространяющиеся в области волнообразования после ослабления ветра и/или изменения его направления, или вызванные ветром волны, пришедшие из области волнообразования в другую область, где дует ветер с другой скоростью и/или другим направлением. Частный случай зыби, распространяющейся при отсутствии ветра носит название мертвой зыби.

Смешанные - волнение, образующееся в результате взаимодействия ветровых волн и зыби.

Трансформация ветровых волн - изменение структуры ветровых волн при изменении глубины. В этом случае форма волн искажается, они становятся круче и короче и при небольшой глубине, не превышающей высоты волны, гребни последних опрокидываются, и волны разрушаются.

По своему внешнему виду ветровые волны характеризуются разными формами.

Рябь - начальная форма развития ветрового волнения, возникающая под действием слабого ветра; гребни волн при ряби напоминают чешую.

Трехмерное волнение - совокупность волн, средняя длина гребня которых в несколько раз превышает среднюю длину волны.

Регулярное волнение - волнение, в котором форма и элементы всех волн одинаковы.

Толчея - беспорядочное волнение, возникающее вследствие взаимодействия волн, бегущих в разных направлениях.

Волны, разбивающиеся над банками, рифами или камнями, носят название бурунов. Волны, обрушивающиеся в прибрежной зоне, называются прибоем. У крутых берегов и у портовых сооружений прибой имеет форму взброса.

Волны на поверхности моря подразделяются на свободные, когда сила, вызвавшая их, прекращает действовать и волны свободно перемещаются, и вынужденные, когда действие силы, вызвавшей образование волн, не прекращается.

По изменчивости элементов волн во времени их разделяют на установившиеся, т. е, ветровое волнение, в котором статистические характеристики волн не изменяются во времени, и развивающиеся или затухающие - изменяющие свои элементы во времени.

По форме волны делятся на двухмерные - совокупность волн, средняя длина гребня которых во много раз больше средней длины волн, трехмерные - совокупность волн, средняя длина гребня которых в несколько раз превышает длину волн, и уединенные, имеющие только куполообразный гребень без подошвы.

В зависимости от отношения длины волны к глубине моря волны подразделяются на короткие, длина которых значительно меньше глубины моря, и длинные, длина которых больше глубины моря.

По характеру перемещения формы волны они бывают поступательные, у которых наблюдается видимое перемещение формы волны, и стоячие - не имеющие перемещения. По тому, как располагаются волны, их делят на поверхностные и внутренние. Внутренние волны образуются на той или иной глубине на поверхности раздела между слоями воды разной плотности.

3.1.2. Методы расчета элементов волн

При изучении морского волнения используются некоторые теоретические положения, объясняющие те или иные стороны этого явления. Общие законы строения волн и характера движения их отдельных частиц рассматриваются трохоидальной теорией волн. Согласно этой теории, отдельные частицы воды в поверхностных волнах движутся по замкнутым эллипсоидным орбитам, совершая полный оборот за время, равное периоду волны т.

Вращательное движение последовательно расположенных частиц воды, сдвинутых на фазовый угол в начальный момент движения, создает видимость поступательного движения: отдельные частицы движутся по замкнутым орбитам, в то время как профиль волны перемещается поступательно в направлении ветра. Трохоидальная теория волн позволила математически обосновать строение отдельных волн и связать между собой их элементы. Были получены формулы, позволяющие рассчитать отдельные элементы волн


где g -ускорение свободного падения, Длина волны К скорость ее распространения С и период t связаны между собой зависимостью К=Сх.

Следует отметить, что трохоидальная теория волн справедлива только для правильных двухмерных волн, которые наблюдаются в случае свободных ветровых волн - зыби. При трехмерном ветровом волнении орбитальные пути частиц не являются замкнутыми круговыми орбитами, так как под воздействием ветра возникает горизонтальный перенос вод на поверхности моря в направлении распространения волны.

Трохоидальная теория морских волн не вскрывает процесса их развития и затухания, а также механизма передачи энергии от ветра к волне. Между тем, решение именно этих вопросов необходимо с целью получения надежных зависимостей для расчета элементов ветровых волн.

Поэтому развитие теории морских волн пошло по пути разработки теоретических и эмпирических связей между ветром и волнением с учетом разнообразия реальных морских ветровых волн и нестационарности явления, т. е. с учетом их развития и затухания.

В общем виде формулы для расчета элементов ветровых волн могут быть выражены в виде функции от нескольких переменных

H, t, Л,C=f(W , D t, H),

Где W - скорость ветра; D - разгон , t - продолжительность действия ветра; Н - глубина моря.

Для мелководных районов морей для расчета высоты и длины волн можно использовать зависимости


Коэффициенты а и z переменны и зависят от глубины моря

А = 0,0151H 0,342 ; z = 0,104H 0,573 .

Для открытых районов морей элементы волн, обеспеченность высот которых составляет 5%, и средние значения длины волн рассчитываются по зависимостям:

H = 0,45 W 0,56 D 0,54 A,

Л = 0,3lW 0,66 D 0,64 A.

Коэффициент А вычисляется по формуле


Для открытых районов океана элементы волн рассчитываются по следующим формулам:


где е - крутизна волны при малых разгонах, D ПР - предельный разгон, км. Максимальную высоту штормовых волн можно рассчитать по формуле


где hmax - максимальная высота волн, м, D - длина разгона, мили.

В Государственном океанографическом институте на основании спектральной статистической теории волнения были получены графические связи между элементами волн и скоростью ветра, продолжительностью его действия и длиной разгона. Эти зависимости следует считать наиболее надежными, дающими приемлемые результаты, на основе которых в Гидрометцентре СССР (В. С. Красюк) были построены номограммы для расчета высоты волн. Номограмма (рис. 26) разделена на четыре квадранта (I-IV) и состоит из серии графиков, расположенных в определенной последовательности.

В квадранте I (отсчет ведется из нижнего правого угла) номограммы дана градусная сетка, каждое деление которой (по горизонтали) соответствует 1° меридиана на данной широте (от 70 до 20° с. ш.) для карт масштаба 1:15 000000 полярной стереографической проекции. Градусная сетка необходима для перевода расстояния между изобарами п и радиуса кривизны изобар R, измеренных на картах другого масштаба, в масштаб 1:15 000000. В этом случае мы определяем расстояние между изобарами п и радиус кривизны изобар R в градусах меридиана на данной широте. Радиус кривизны изобар R - радиус Окружности, с которой участок изобары, проходящей через точку, для которой ведется расчет, или вблизи нее имеет наибольшее соприкосновение. Определяется он с помощью измерителя путем подбора таким образом, чтобы дуга, проведенная из найденного центра, совпадала с данным участком изобары. Затем на градусной сетке откладываем измеренные величины на данной широте, выраженные в градусах меридиана, и раствором циркуля определяем радиус кривизны изобар и расстояние между изобарами, соответствующее масштабу 1:15000 000.


В квадранте II номограммы приведены кривые, выражающие зависимость скорости ветра от барического градиента и географической широты места (каждая кривая соответствует определенной широте- от 70 до 20° с. ш.). Для перехода от рассчитанного градиентного ветра к ветру, дующему вблизи поверхности моря (на высоте 10 м), была выведена поправка, учитывающая стратификацию приводного слоя атмосферы. При расчетах для холодной части года (устойчивая стратификация t w 2°С)-коэффициент 0,6.


Рис. 26. Номограмма для расчета элементов волн и скорости ветра по картам приземного поля давления, где изобары проведены с интервалом 5 мбар (а) и 8 мбар (б). 1 - зима, 2 - лето.


В квадранте III производится учет влияния кривизны изобар на скорость геострофического ветра. Кривые, соответствующие различным значениям радиуса кривизны (1, 2, 5 и т. д.), даны сплошными (зима) и штриховыми (лето) линиями. Знак оо означает, что изобары прямолинейны. Обычно при радиусе кривизны, превышающей 15°, учета кривизны при расчетах не требуется. По оси абсцисс, разделяющей кйадранты III и IV, определяется скорость ветра W для данной точки.

В квадранте IV расположены кривые, позволяющие по скорости ветра, разгону или продолжительности действия ветра определять высоту так называемых значительных волн (h 3H), имеющих обеспеченность 12,5%.

Если имеется возможность при определении высоты волн использовать не только данные о скорости ветра, но и о разгоне и продолжительности действия ветра, расчет выполняется по разгону и продолжительности действия ветра (в часах). Для этого из квадранта III номограммы опускаем перпендикуляр не до кривой разгона, а до кривой продолжительности действия ветра (6 или 12 ч). Из полученных результатов (по разгону и продолжительности) берется меньшее значение высоты волны.

Расчет с помощью предлагаемой номограммы можно производить лишь для районов «глубокого моря», т. е. для районов, где глубина моря не меньше половины длины волны. При разгоне, превышающем 500 км, или продолжительности действия ветра больше 12 ч используется зависимость высот волн от ветра, соответствующая океанским условиям (утолщенная кривая в квадранте IV).

Таким образом, для определения высоты волн в данной точке необходимо выполнить следующие операции:

А) найти радиус кривизны изобары R, проходящий через данную точку или вблизи нее (с помощью циркуля путем подбора). Радиус кривизны изобар определяется только в случае циклонической кривизны (в циклонах и ложбинах) и выражается в градусах меридиана;

Б) определить разность давления п путем измерения расстояния между соседними изобарами в районе выбранной точки;

В) по найденным значениям R и п в зависимости от времени года находим скорость ветра W;

Г) зная скорость ветра W и разгон D или продолжительность действия ветра (6 или 12 ч), находим высоту значительных волн (h 3H).

Разгон находится следующим образом. От каждой точки, для которой ведется расчет высоты волн, в направлении против ветра проводится линия тока до тех пор, пока ее направление не изменится по отношению к начальному на угол 45° или не достигнет берега, или кромки льда. Приблизительно это и будет разгон или путь ветра, на протяжении которого должны формироваться (волны, приходящие в данную точку.

Продолжительность действия ветра определяется как время, в течение которого направление ветра неизменно или отклоняется от первоначального не более чем на ±22,5°.

По номограмме на рис. 26 а можно определить высоту волны по карте приземного поля давления, на которой изобары проведены через 5 мбар. Если изобары проведены через 8 мбар, то следует использовать номограмму, приведенную на рис. 26 б.

Период и длину волны можно рассчитать по данным о скорости ветра и высоте волны. Приближенный расчет периода волн может быть произведен по графику (рис. 27), на котором представлена зависимость между периодами и высотой ветровых волн при различных скоростях ветра (W). Длина волн определяется по ее периоду и глубине моря в данной точке по графику (рис. 28).

Волны появляются благодаря ветру. Бури образуют ветра, которые воздействуют на поверхность воды, в результате чего возникает зыбь Точно также, как образуется рябь в твоей чашечке кофе после серфинга, когда ты на него дуешь. Сам же ветер можно увидеть на картах прогноза погоды: это зоны низкого давления. Чем больше их концентрация, тем сильнее будет ветер. Малые (капиллярные) волны изначально движутся в направлении, в котором дует ветер.

Чем сильнее и дольше дует ветер, тем больше его воздействие на поверхность воды. Со временем волны начинают увеличиваться в размере.

По мере того, как ветер продолжает дуть, и порожденные им волны и далее подвергаются его воздействию, малые волны начинают расти. На них ветер оказывает большее воздействие, чем на спокойную поверхность воды.
Размер волны зависит от скорости ветра, который ее образует. Ветер, дующий с какой-то постоянной скоростью, сможет генерировать волну определенных размеров. И как только волна приобретает максимально возможные размеры при данном ветре, она становится «полностью сформированной».

Генерируемые волны имеют различные скорости и периоды волны. (Смотри более подробно в разделе волновая терминология)
Волны с большим периодом двигаются быстрее и преодолевают большие расстояния, чем их более медленные собратья. По мере отдаления от источника ветра (распространения) волны образуют линии прибоев (свеллов), которые неизбежно накатывают на берег. Наверное, ты уже знаком с понятием «wave set» (вейв сет)!

Волны, на которые больше не влияет ветер, породивший их, называются донными волнами (groundswell). Это именно то, за чем охотятся серферы!

Что влияет на размер прибоя (свелла)?

Есть три основных фактора, влияющие на размер волн в открытом море:
Скорость ветра – чем она больше, тем крупнее будет волна.
Продолжительность ветра – аналогично предыдущему.
Fetch (фетч, «область покрытия»)– опять же, чем больше область покрытия, тем крупнее образуется волна.
Как только воздействие ветра на них прекращается, волны начинают терять свою энергию. Они буду двигаться до того момента, как выступы морского дна, либо другие препятствия на их пути (крупный остров к примеру) не поглотят всю энергию.

Существует несколько факторов, влияющих на размер волны в конкретном месте прибоя. Среди них:

Направление прибоя (свелла) – позволит ли оно попасть свеллув нужное нам место?
Океанское дно – свелл, движущийся из глубины океана на риф, образует крупные волны с бочками внутри. Неглубокий длинный выступ, тянущийся к берегу замедлит волны, и они утратят свою энергию.
Приливы – некоторые виды спорта полностью от него зависят.
Узнай больше в разделе как появляются лучшие волны

Изначально волна появляется благодаря ветру. Буря, образовавшаяся в открытом океане, вдали от берега создаст ветра, которые начнут воздействовать на поверхность водыв связи с этим начинает возникать зыбь. Ветер, его направление, а так же скорость, все эти данные можно увидеть на картах прогноза погоды. Ветер начинает раздувать воду, и начнут появляться «Малые» (капиллярные) волны, изначально они начинают движение в направлении, в котором дует ветер.

Ветер дует на ровную поверхность воды, чем дольше и сильнее начинает дуть ветер, тем больше воздействия на поверхность воды. Со временем волны соединяются, и размер волны начинает увеличиваться. Постоянный ветер начинает образовывать крупный свелл. Ветер оказывает намного больше воздействия на уже созданные волны, хоть и не большие- намного больше, нежели на спокойную гладь воды.

Размер волн напрямую зависит от скорости дующего ветра, который их образует. Ветер, дующий с постоянной скоростью, может сгенерировать волну сопоставимых размеров. И как только волна приобретет размер, который заложил в нее ветер, она становится полностью сформировавшейся волной, которая идет в сторону берега.

Волны имеют различную скорость и периоды. Волны имеющие большой период двигаются достаточно быстро и преодолевают большие расстояния, чем собратья имеющие меньшую скорость. По мере отдаления от источника ветра волны соединяясь образуют свелл, который идет в сторону берега. Волны на которые больше ветер не влияет- называются «Донными волнами». Это именно те волны, за которыми охотятся все серферы.

Что влияет на размер свелла? Есть три фактора влияющие на размер волн в открытом океане:
Скорость ветра – Чем больше скорость, тем в итоге крупнее будет волна.
Продолжительность ветра– чем дольше дует ветер, аналогично прошлому фактору- волна будет крупнее.
Fetch (область покрытия ветром)– Чем больше область покрытия, тем крупнее образуется волна.
Когда воздействие ветра на волны прекращается, они начинают терять свою энергию. Они буду продолжать двигаться до того момента, пока не уткнуться в выступы дна у какого-нибудь большого океанического острова и серфер не поймает одну из этих волн в случае удачных стечений обстоятельств.

Существует факторы, влияющие на размер волн в конкретном месте. Среди них:
Направление свелла– что позволит волнам прийти в нужное нам место.
Океанское дно– Свелл, движущийся из открытого океана натыкается на подводную гряду скал, или риф- образует крупные волны с которые могут закручиваться в трубу. Или неглубокий выступ дна- напротив замедлит волны и они потратят часть своей энергии.
Приливный цикл – многие серф-споты напрямую зависят от этого явления.

Волны – понятие из «арсенала» физики. Чтобы проще и доходчивее объяснить, что это такое, можно привести пример, казалось бы далекий от темы.

…Коронация Екатерины II происходила в Москве. Новоиспеченная императрица пожелала, чтобы о торжественном моменте возвестили салютом в Санкт-Петербурге, но как передать сигнал? Ведь тогда не существовало ни Интернета, ни телефона, ни даже телеграфа. И все же выход был найден: от Москвы до Санкт-Петербурга расставили солдат с флажками в руках на расстоянии прямой видимости друг от друга. В нужный момент первый солдат поднял флажок, следующий, увидев это, сделал то же самое и т.д. Сигнал был получен в Санкт-Петербурге менее, чем через четверть часа!

Что мы видим в данном случае? Ни один человек не перемещался, но перемещалось, передаваясь от человека к человеку, определенное состояние. Если нечто подобное происходит в некой среде (твердой, жидкой или газообразной) или же в электромагнитном поле – не происходит перемещения материи, но перемещается определенное изменение физических характеристик – это называется волной (это будет еще понятнее, если мы снова вспомним выражение, далекое от физики: «По стране прокатилась волна забастовок» – опять же, «прокатилось» изменение состояния).

Частный случай волны – это те колебательные возмущения, которые распространяются в толще воды или по ее поверхности.

У любой волны есть вершина (самая высокая точка ее гребня), подошва (самая низкая точка ложбины), высота (превышение вершины), длина (расстояние между вершинами гребней двух смежных волн), период (временной интервал, за который волна пройдет расстояние, равное ее длине) и крутизна (соотношение высоты и длины волны). Также оценивается скорость, с которой волна перемещается в том направлении, в котором она распространяется.

Причины образования волн на поверхности морей и океанов многообразны. Чаще всего можно наблюдать ветровые волны. Их размер и форма не отличаются упорядоченностью, за малой волной вполне может последовать большая, гребни волн не обязательно перемещаются в направлении ветра. Это связано с тем, что ветер, образующий волны, имеет вихревой, турбулентный характер. Размер ветровых волн зависит не только от скорости ветра, но и от его продолжительности.

Ветер – не единственная причина возникновения морских волн. Существуют приливные волны. Вопреки распространенному заблуждению, они появляются не потому, что Луна «притягивает» воду, а потому, что Земля вместе со своей водной оболочкой «растягивается» между самой отдаленной от Луны точкой и самой близкой к ней, это происходит из-за разницы в гравитационном притяжении между этими двумя точками.

Барические волны возникают из-за резких перепадов атмосферного давления. Это бывает там, где проходит циклон, особенно тропический. Если такие волны совпадут с высокими приливными – жди беды! Особенно часто такое случается на побережье Флориды, Японии, Китая, Индии, на Антильских островах.

Особенно опасны для моряков глубинные волны. Они возникают там, где есть два слоя воды с разными свойствами, и происходит их смешение – например, поблизости от тающих льдов или в проливах.

Волны цунами образуются при землетрясениях на морском дне. Японское происхождение названия не случайно – это страна особенно часто страдает от такого стихийного бедствия.

Когда прекращается действие ветра, сейсмических толчков и прочих сил, вызывающих волны, во внутренних морях и заливах по инерции возникают стоячие волны большого периода – сейши. Так, на Азовском море период таких волн может достигать 23 часов.

Наконец, существуют корабельные волны. Ведь проходящее по морю судно тоже вызывает возмущение водой среды, а значит – и образование волн.

Волнение представляет собой такую форму периодического непрерывно меняющегося движения, при котором частицы воды совершают колебания около своего положения равновесия.

Если из-за какой-либо причины частицы воды будут выведе­ны из положения равновесия, то под влиянием силы тяжести они будут стремиться восстановить нарушенное равновесие. Приэтом каждая водная частица будет совершать колебательное движение относительно положения равновесия, не перемещаясь вместе с видимой формой движения волн.


Волны могут возникать под действием разных причин (сил). В зависимости от происхождения, т. е. от вызвавших нх причин, различают следующие виды морских волн.

  1. Волны трения (илн фрикционные). К этим волнам принадлежат в первую очередь ветровые, возникающие при дей­ствии ветра на поверхность моря. К ним относятся также так называемые внутренние, или глубинные, волны, которые возни­кают на глубинах при перемещении слоя воды одной плотности над слоем вочы другой плотности.

Исследованиями установлено, что если над жидкостью одной плотности движется другая жидкость, имеющая иную плотность, то на поверхности, разделяющем обе жидкости, образуются вол­ны. Размер этих волн зависит от разности скоростей движения жидкостей по отношению друг друга и разности плотности двух сред. Это относится и к случаю движения воздуха над водой. Вот почему волны возникают и па глубинах океана, и в высоких слоях атмосферы, если там существует подобное движение двух разных по плотности водных или воздушных масс.

  1. Барические волны возникают при колебаниях ат­мосферного давления. Колебания атмосферного давления вызы­вают поднятия и опускания водных масс, при которых частицы воды стремятся занять новые положения равновесия, но, до­стигнув их, совершают по инерции колебательные движения.

  2. Приливо-отливные волны возникают под влия­нием явления приливов и отливов.

  3. Сейсмические волны образуются при землетрясе­ниях и вулканических извержениях. Если очаг землетрясения расположен под водой или же поблизости от берега, то колеба­ния передаются водным массам, вызывая в них сейсмические волны, которые называются еще цунами.

  4. Сейши. В морях, озерах, водохранилищах, кроме коле­бания водных частиц в виде поступательных волн, нередко наб­людаются периодические колебания частиц воды только в вер­тикальном направлении. Такие волны называются сейшами. При сейшах происходят колебания, похожие по своему характеру на колебания, в периодически покачиваемом сосуде. Самый простой вид сейш возникает, когда уровень воды поднимается у одного края водоема и одновременно опускается у другого. При этом по середине водоема наблюдается линия, вдоль которой частицы воды не имеют вертикальных перемещений, а движутся горизон­тально. Эта линия называется узлом сейша. Более сложные сей­ши бывают двухузловымн, трехузловыми и т. д.

Сейши могут возникать в результате различных причин. Ве­тер, дующий над морем некоторое время в одном и том же на­правлении, производит нагон воды у подветренного берега. С прекращением ветра сейчас же начинаются колебания уровня сейшового характера. Это же явление может возникать под влия­нием разности атмосферного давления в различных местах вод­ного бассейна. Сеншевые колебания уровня моря мот созда­ваться сейсмическими колебаниями в очень небольших бассей­нах (в гавани, в ковше и т. п.) сейши могут возникать при про­хождении судов.