Правило раскрытия скобок при делении. Скобка в скобке. Если перед скобкой стоит множитель, то каждый член скобки умножается на него, то есть

  • 20.09.2019

сформировать способность к раскрытию скобок с учетом знака, стоящего перед скобками;

  • развивающие:
  • развивать логическое мышление, внимание, математическую речь, умение анализировать, сравнивать, обобщать, делать выводы;
  • воспитывающие:
  • формирование ответственности, познавательного интереса к предмету

    Ход урока

    I. Организационный момент.

    Проверь-ка дружок
    Ты готов на урок?
    Всё ли на месте? Всё в порядке?
    Ручка, книжка и тетрадка.
    Все ли правильно сидят?
    Все ль внимательно глядят?

    Начать урок я хочу с вопроса к вам:

    Как вы думаете, что самое ценное на Земле? (Ответы детей.)

    Этот вопрос волновал человечество не одну тысячу лет. Вот какой ответ дал известный ученый Аль-Бируни: “Знание – самое превосходное из владений. Все стремятся к нему, само же оно не приходит”.

    Пусть эти слова станут девизом нашего урока.

    II. Актуализация прежних знаний, умений, навыков:

    Устный счет:

    1.1. Какое сегодня число?

    2. Расскажите, что вы знаете о числе 20?

    3. А где расположено это число на координатной прямой?

    4. Назовите число ему обратное.

    5. Назовите число ему противоположное.

    6. Как называется число – 20?

    7. Какие числа называются противоположными?

    8. Какие числа называются отрицательными?

    9. Чем равен модуль числа 20? – 20?

    10. Чему равна сумма противоположных чисел?

    2. Объясните следующие записи:

    а) Гениальный математик древности Архимед родился в 0 287 г.

    б) Гениальный русский математик Н.И.Лобаческий родился в 1792 г.

    в) Первые олимпийские игры состоялись в Греции в – 776 г.

    г) Первые Международные олимпийские игры состоялись в 1896 г.

    д) XXII Олимпийские зимние игры состоялись в 2014 году.

    3. Узнайте, какие числа крутятся на “математической карусели” (все действия выполняются устно).

    II. Формирование новых знаний, умений, навыков.

    Вы научились выполнять разные действия с целыми числами. Чем же будем заниматься дальше? Как будем решать примеры и уравнения?

    Давайте найдем значение данных выражений

    7 + (3 + 4) = -7 + 7 = 0
    -7 + 3 + 4 = 0

    Какой порядок действий в 1 примере? Сколько получилось в скобках? Порядок действий во втором примере? Результат первого действия? Что можно сказать об этих выражениях?

    Конечно результаты первого и второго выражений одинаковы, значит между ними можно поставить знак равенства: -7 + (3 + 4) = -7 + 3 + 4

    Что же мы сделали со скобками? (Опустили.)

    Как вы думаете чем мы будем заниматься сегодня на уроке? (Дети формулируют тему урока.) В нашем примере, какой знак стоит перед скобками. (Плюс.)

    И так мы подошли к следующему правилу:

    Если перед скобками стоит знак +, то можно опустить скобки и этот знак +, сохраняя знаки слагаемых, стоящих в скобках. Если первое слагаемое в скобках записано без знака, то его надо записать со знаком +.

    А как быть, если перед скобками стоит знак минус?

    В этом случае нужно рассуждать так же как при вычитании: необходимо прибавить число противоположное вычитаемому:

    7 – (3 + 4) = -7 + (-7) = -7 + (-3) + (-4) = -7 – 3 – 4 = -14

    – Итак, мы раскрыли скобки, когда перед ними стоял знак минус.

    Правило раскрытия скобок, когда перед скобками стоит знак “-“.

    Чтобы раскрыть скобки, перед которыми стоит знак -, надо заменить этот знак на +, поменяв знаки всех слагаемых в скобках на противоположные, а потом раскрыть скобки.

    Давайте послушаем правила раскрытия скобок в стихах:

    Перед скобкой плюс стоит.
    Он о том и говорит
    Что ты скобки опускай
    Да все знаки выпускай!
    Перед скобкой минус строгий
    Загородит нам дорогу
    Чтобы скобки убирать
    Надо знаки поменять!

    Да ребята знак минус очень коварный, это “ сторож” у ворот(скобки), он выпускает числа и переменные только тогда, когда они поменяют “ паспорта”, то есть свои знаки.

    Зачем вообще нужно раскрывать скобки? (Когда есть скобки, есть момент какой-то элемент незавершенности, какой-то тайны. Это – как закрытая дверь, за которой находится что-то интересное.) Вот сегодня мы изведали эту тайну.

    Небольшой экскурс в историю:

    Фигурные скобки появляются в сочинениях Виета (1593). Широкое применение скобки получили лишь в первой половине XVIII века, благодаря Лейбницу и ещё больше Эйлеру.

    Физкультминутка.

    III. Закрепление новых знаний, умений, навыков.

    Работа по учебнику:

    № 1234 (раскройте скобки) – устно.

    № 1236(раскройте скобки) – устно.

    № 1235 (найдите значение выражения) – письменно.

    № 1238 (упростите выражения) – работа в парах.

    IV. Подведение итогов урока.

    1. Объявляются оценки.

    2. Дом. задание. п.39 №1254 (а, б, в),1255 (а, б, в),1259.

    3. Чему мы сегодня научились?

    Что нового узнали?

    И завершить урок я хочу пожеланиями каждому из вас:

    “К математике способность проявляй,
    Не ленись, а ежедневно развивай.
    Умножай, дели, трудись, соображай,
    С математикой дружить не забывай”.

    Скобки используются для указания на порядок выполнения действий в числовых и буквенных выражениях, а также в выражениях с переменными. От выражения со скобками удобно перейти к тождественно равному выражению без скобок. Этот прием носит название раскрытия скобок.

    Раскрыть скобки означает избавить выражение от этих скобок.

    Отдельного внимания заслуживает еще один момент, который касается особенностей записи решений при раскрытии скобок. Мы можем записать начальное выражение со скобками и полученный после раскрытия скобок результат как равенство. Например, после раскрытия скобок вместо выражения
    3−(5−7) мы получаем выражение 3−5+7. Оба этих выражения мы можем записать в виде равенства 3−(5−7)=3−5+7.

    И еще один важный момент. В математике для сокращения записей принято не писать знак плюс, если он стоит в выражении или в скобках первым. Например, если мы складываем два положительных числа, к примеру, семь и три, то пишем не +7+3, а просто 7+3, несмотря на то, что семерка тоже положительное число. Аналогично если вы видите, например, выражение (5+x) – знайте, что и перед скобкой стоит плюс, который не пишут, и перед пятеркой стоит плюс +(+5+x).

    Правило раскрытия скобок при сложении

    При раскрытии скобок, если перед скобками стоит плюс, то этот плюс опускается вместе со скобками.

    Пример. Раскрыть скобки в выражении 2 + (7 + 3) Перед скобками плюс, значит знаки перед числами в скобках не меняем.

    2 + (7 + 3) = 2 + 7 + 3

    Правило раскрытия скобок при вычитании

    Если перед скобками стоит минус, то этот минус опускается вместе со скобками, но слагаемые, которые были в скобках, меняют свой знак на противоположный. Отсутствие знака перед первым слагаемым в скобках подразумевает знак +.

    Пример. Раскрыть скобки в выражении 2 − (7 + 3)

    Перед скобками стоит минус, значит нужно поменять знаки перед числами из скобок. В скобках перед цифрой 7 знака нет, это значит, что семерка положительная, считается, что перед ней знак +.

    2 − (7 + 3) = 2 − (+ 7 + 3)

    При раскрытии скобок убираем из примера минус, который был перед скобками, и сами скобки 2 − (+ 7 + 3) , а знаки, которые были в скобках, меняем на противоположные.

    2 − (+ 7 + 3) = 2 − 7 − 3

    Раскрытие скобок при умножении

    Если перед скобками стоит знак умножения, то каждое число, стоящее внутри скобок, умножается на множитель, стоящий перед скобками. При этом умножение минуса на минус дает плюс, а умножение минуса на плюс, как и умножение плюса на минус дает минус.

    Таким образом, сскобки в произведениях раскрываются в соответствии с распределительным свойством умножения.

    Пример. 2 · (9 - 7) = 2 · 9 - 2 · 7

    При умножении скобки на скобку, каждый член первой скобки перемножается с каждым членом второй скобки.

    (2 + 3) · (4 + 5) = 2 · 4 + 2 · 5 + 3 · 4 + 3 · 5

    На самом деле, нет необходимости запоминать все правила, достаточно помнить только одно, вот это: c(a−b)=ca−cb. Почему? Потому что если в него вместо c подставить единицу, получится правило (a−b)=a−b. А если подставить минус единицу, получим правило −(a−b)=−a+b. Ну, а если вместо c подставить другую скобку – можно получить последнее правило.

    Раскрываем скобки при делении

    Если после скобок стоит знак деления, то каждое число, стоящее внутри скобок, делится на делитель, стоящий после скобок, и наоборот.

    Пример. (9 + 6) : 3=9: 3 + 6: 3

    Как раскрыть вложенные скобки

    Если в выражении присутствуют вложенные скобки, то их раскрывают по порядку, начиная с внешних или внутренних.

    При этом важно при раскрытии одной из скобок не трогать остальные скобки, просто переписывая их как есть.

    Пример. 12 - (a + (6 - b) - 3) = 12 - a - (6 - b) + 3 = 12 - a - 6 + b + 3 = 9 - a + b

    «Раскрытие скобок» — Учебник по математике 6 класс (Виленкин)

    Краткое описание:


    В этом разделе Вы будете учиться раскрывать скобки в примерах. Для чего это нужно? Все для того же, что и раньше – чтобы Вам было легшее и проще считать, чтобы допускать меньше ошибок, а в идеале (мечта Вашего учителя математики) для того, чтобы вообще все решать без ошибок.
    Вы уже знаете, что скобки в математической записи ставятся, если подряд идут два математических знака, если мы хотим показать объединение чисел, их перегруппировку. Раскрыть скобки означает избавиться от лишних знаков. Например: (-15)+3=-15+3=-12, 18+(-16)=18-16=2. А помните распределительное свойство умножения относительно сложения? Ведь в том примере мы также избавлялись от скобок для упрощения вычислений. Названное свойство умножения также можно применять для четырех, трех, пяти и более слагаемых. Для примера: 15*(3+8+9+6)=15*3+15*8+15*9+15*6=390. Вы заметили, что при раскрытии скобок числа, находящиеся в них не меняют знака, если стоящее перед скобками число положительное? Ведь пятнадцать – положительное число. А если решить такой пример: -15*(3+8+9+6)=-15*3+(-15)*8+(-15)*9+(-15)*6=-45+(-120)+(-135)+(-90)=-45-120-135-90=-390. У нас перед скобками стояло отрицательное число минус пятнадцать, когда мы раскрыли скобки все числа стали менять свой знак на другой — противоположный – с плюса на минус.
    Исходя из вышеуказанных примеров, можно озвучить два основных правила раскрытия скобок:
    1. Если у Вас перед скобками стоит положительное число, то после раскрытия скобок все знаки чисел, стоявших в скобках, не изменяются, а остаются точно такими же как и были.
    2. Если у Вас перед скобками стоит отрицательное число, то после раскрытия скобок знак минуса больше не пишется, а знаки всех абсолютно чисел, стоявших в скобках, резко меняются на противоположные.
    Для примера: (13+8)+(9-8)=13+8+9-8=22; (13+8)-(9-8)=13+8-9+8=20. Немного усложним наши примеры: (13+8)+2(9-8)=13+8+2*9-2*8=21+18-16=23. Вы заметили, что раскрывая вторые скобки, мы умножали на 2, но знаки оставались теми же как и были. А вот такой пример: (3+8)-2*(9-8)=3+8-2*9+2*8=11-18+16=9, в этом примере число два — отрицательное, оно перед скобками стоит со знаком минус, поэтому раскрывая их, мы меняли знаки чисел на противоположные (девять было с плюсом, стало с минусом, восемь было с минусом, стало с плюсом).

    А+(b + с) можно записать без скобок: a+(b + c)=a + b + c. Эту операцию называют раскрытием скобок.

    Пример 1. Раскроем скобки в выражении а + (- b + c).

    Решение. a + (-b+c) = a + ((-b) + c)=a + (-b) + c = a-b + c.

    Если перед скобками стоит знак « + » то можно опустить скобки и этот знак « + » сохранив знаки слагаемых, стоящих в скобках. Если первое слагаемое в скобках записано без знака, то его надо записать со знаком « + ».

    Пример 2. Найдем значение выражения -2,87+ (2,87-7,639).

    Решение. Раскрывая скобки, получим - 2,87 + (2,87 - 7,639) = - - 2,87 + 2,87 - 7,639 =0 - 7,639 = - 7,639.

    Чтобы найти значение выражения - (- 9 + 5), надо сложить числа -9 и 5 и найти число, противоположное полученной сумме: -(- 9 + 5)= -(- 4) = 4.

    То же значение можно получить по-другому: вначале записать числа, противоположные данным слагаемым (т. е. изменить их знаки), а потом сложить: 9 + (- 5) = 4. Таким образом, -(- 9 + 5) = 9 - 5 = 4.

    Чтобы записать сумму, противоположную сумме нескольких слагаемых, надо изменить знаки данных слагаемых.

    Значит, - (а + b) = - а - b.

    Пример 3. Найдем значение выражения 16 - (10 -18 + 12).

    Решение. 16-(10 -18 + 12) = 16 + (-(10 -18 + 12)) = = 16 + (-10 +18-12) = 16-10 +18-12 = 12.

    Чтобы раскрыть скобки, перед которыми стоит знак «-», надо заменить этот знак на « + », поменяв знаки всех слагаемых в скобках на противоположные, а потом раскрыть скобки.

    Пример 4. Найдем значение выражения 9,36-(9,36 - 5,48).

    Решение. 9,36 - (9,36 - 5,48) = 9,36 + (- 9,36 + 5,48) = = 9,36 - 9,36 + 5,48 = 0 -f 5,48 = 5,48.

    Раскрытие скобок и применение переместительного и сочетательного свойств сложения позволяют упрощать вычисления.

    Пример 5. Найдем значение выражения (-4-20)+(6+13)-(7-8)-5.

    Решение. Сначала раскроем скобки, а потом найдем отдельно сумму всех положительных и отдельно сумму всех отрицательных чисел и, наконец, сложим полученные результаты:

    (- 4 - 20)+(6+ 13)-(7 - 8) - 5 = -4-20 + 6 + 13-7 + 8-5 = = (6 + 13 + 8)+(- 4 - 20 - 7 - 5)= 27-36=-9.

    Пример 6. Найдем значение выражения

    Решение. Сначала представим каждое слагаемое в виде суммы их целой и дробной частей, затем раскроем скобки, потом сложим отдельно целые и отдельно дробные части и, наконец, сложим полученные результаты:


    Как раскрывают скобки, перед которыми стоит знак « + »? Как можно найти значение выражения, противоположное сумме нескольких чисел? Как раскрыть скобки, перед которыми стоит знак « - »?

    1218. Раскройте скобки:

    а) 3,4+(2,6+ 8,3); в) m+(n-k);

    б) 4,57+(2,6 - 4,57); г) с+(-a + b).

    1219. Найдите значение выражения:

    1220. Раскройте скобки:

    а) 85+(7,8+ 98); г) -(80-16) + 84; ж) a-(b-k-n);
    б) (4,7 -17)+7,5; д) -а + (m-2,6); з) -(а-b + с);
    в) 64-(90 + 100); е) с+(- а-b); и) (m-n)-(p-k).

    1221. Раскройте скобки и найдите значение выражения:


    1222. Упростите выражение:


    1223. Напишите сумму двух выражений и упростите ее:

    а) - 4 - m и m + 6,4; г) а+b и р - b
    б) 1,1+а и -26-а; д) - m + n и -k - n;
    в) а + 13 и -13 + b; е)m - n и n - m.

    1224. Напишите разность двух выражений и упростите ее:

    1226. Решите с помощью уравнения задачу:

    а) На одной полке 42 книги, а на другой 34. Со второй полки сняли несколько книг, а с первой - столько, сколько осталось на второй. После этого на первой полке осталось 12 книг. Сколько книг сняли со второй полки?

    б) В первом классе 42 ученика, во втором на 3 ученика меньше, чем в третьем. Сколько учеников в третьем классе, если всего в этих трех классах 125 учеников?

    1227. Найдите значение выражения:

    1228. Вычислите устно:

    1229. Найдите наибольшее значение выражения:

    1230. Укажите 4 последовательных целых числа, если:

    а) меньшее из них равно -12; в) меньшее из них равно n;
    б) большее из них равно -18; г) большее из них равно k.

    Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

    Среди различных выражений, которые рассматриваются в алгебре, важное место занимают суммы одночленов. Приведем примеры таких выражений:
    \(5a^4 - 2a^3 + 0,3a^2 - 4,6a + 8 \)
    \(xy^3 - 5x^2y + 9x^3 - 7y^2 + 6x + 5y - 2 \)

    Сумму одночленов называют многочленом. Слагаемые в многочлене называют членами многочлена. Одночлены также относят к многочленам, считая одночлен многочленом, состоящим из одного члена.

    Например, многочлен
    \(8b^5 - 2b \cdot 7b^4 + 3b^2 - 8b + 0,25b \cdot (-12)b + 16 \)
    можно упростить.

    Представим все слагаемые в виде одночленов стандартного вида:
    \(8b^5 - 2b \cdot 7b^4 + 3b^2 - 8b + 0,25b \cdot (-12)b + 16 = \)
    \(= 8b^5 - 14b^5 + 3b^2 -8b -3b^2 + 16 \)

    Приведем в полученном многочлене подобные члены:
    \(8b^5 -14b^5 +3b^2 -8b -3b^2 + 16 = -6b^5 -8b + 16 \)
    Получился многочлен, все члены которого являются одночленами стандартного вида, причем среди них нет подобных. Такие многочлены называют многочленами стандартного вида .

    За степень многочлена стандартного вида принимают наибольшую из степеней его членов. Так, двучлен \(12a^2b - 7b \) имеет третью степень, а трехчлен \(2b^2 -7b + 6 \) - вторую.

    Обычно члены многочленов стандартного вида, содержащих одну переменную, располагают в порядке убывания показателей ее степени. Например:
    \(5x - 18x^3 + 1 + x^5 = x^5 - 18x^3 + 5x + 1 \)

    Сумму нескольких многочленов можно преобразовать (упростить) в многочлен стандартного вида.

    Иногда члены многочлена нужно разбить на группы, заключая каждую группу в скобки. Поскольку заключение в скобки - это преобразование, обратное раскрытию скобок, то легко сформулировать правила раскрытия скобок:

    Если перед скобками ставится знак «+», то члены, заключаемые в скобки, записываются с теми же знаками.

    Если перед скобками ставится знак «-», то члены, заключаемые в скобки, записываются с противоположными знаками.

    Преобразование (упрощение) произведения одночлена и многочлена

    С помощью распределительного свойства умножения можно преобразовать (упростить) в многочлен произведение одночлена и многочлена. Например:
    \(9a^2b(7a^2 - 5ab - 4b^2) = \)
    \(= 9a^2b \cdot 7a^2 + 9a^2b \cdot (-5ab) + 9a^2b \cdot (-4b^2) = \)
    \(= 63a^4b - 45a^3b^2 - 36a^2b^3 \)

    Произведение одночлена и многочлена тождественно равно сумме произведений этого одночлена и каждого из членов многочлена.

    Этот результат обычно формулируют в виде правила.

    Чтобы умножить одночлен на многочлен, надо умножить этот одночлен на каждый из членов многочлена.

    Мы уже неоднократно использовали это правило для умножения на сумму.

    Произведение многочленов. Преобразование (упрощение) произведения двух многочленов

    Вообще, произведение двух многочленов тождественно равно сумме произведении каждого члена одного многочлена и каждого члена другого.

    Обычно пользуются следующим правилом.

    Чтобы умножить многочлен на многочлен, надо каждый член одного многочлена умножить на каждый член другого и сложить полученные произведения.

    Формулы сокращенного умножения. Квадраты суммы, разности и разность квадратов

    С некоторыми выражениями в алгебраических преобразованиях приходится иметь дело чаще, чем с другими. Пожалуй, наиболее часто встречаются выражения \((a + b)^2, \; (a - b)^2 \) и \(a^2 - b^2 \), т. е. квадрат суммы, квадрат разности и разность квадратов. Вы заметили, что названия указанных выражений как бы не закончены, так, например, \((a + b)^2 \) - это, конечно, не просто квадрат суммы, а квадрат суммы а и b. Однако квадрат суммы а и b встречается не так уж часто, как правило, вместо букв а и b в нем оказываются различные, иногда довольно сложные выражения.

    Выражения \((a + b)^2, \; (a - b)^2 \) нетрудно преобразовать (упростить) в многочлены стандартного вида, собственно, вы уже встречались с таким заданием при умножении многочленов:
    \((a + b)^2 = (a + b)(a + b) = a^2 + ab + ba + b^2 = \)
    \(= a^2 + 2ab + b^2 \)

    Полученные тождества полезно запомнить и применять без промежуточных выкладок. Помогают этому краткие словесные формулировки.

    \((a + b)^2 = a^2 + b^2 + 2ab \) - квадрат суммы равен сумме квадратов и удвоенного произведения.

    \((a - b)^2 = a^2 + b^2 - 2ab \) - квадрат разности равен сумме квадратов без удвоенного произведения.

    \(a^2 - b^2 = (a - b)(a + b) \) - разность квадратов равна произведению разности на сумму.

    Эти три тождества позволяют в преобразованиях заменять свои левые части правыми и обратно - правые части левыми. Самое трудное при этом - увидеть соответствующие выражения и понять, чем в них заменены переменные а и b. Рассмотрим несколько примеров использования формул сокращенного умножения.