Клеточная структура ответственная за синтез белка. Как происходит синтез белка

  • 18.02.2024

Способность клеток поддерживать высокую упорядоченность своей организации зависит от генетической информации, которая реализуется, сохраняется, воспроизводится или совершенствуется в четырёх генетических процессах: синтезе РНК и белка, репарации ДНК, репликации ДНК и генетической рекомбинации. На долю белков приходится обычно больше половины сухой массы клетки, и синтез их играет главную роль в таких процессах как рост и дифференцировка клеток, поддержание их структуры и функции.

Зависит от совместного действия нескольких классов молекул РНК. Сначала в результате копирования ДНК, несущей информацию о синтезируемом белке, образуется молекула матричной РНК (мРНК). К каждой из 20 аминокислот, из которых строится белок, присоединяется молекула специфической транспортной РНК (тРНК), а к субъединицам рибосомы, на которой происходит синтез, присоединяются некоторые вспомогательные белковые факторы.

Началом синтеза белка в клетке считается момент, когда эти компоненты объединяются в цитоплазме, образуя функциональную рибосому. По мере того как мРНК шаг за шагом продвигается сквозь рибосому, её нуклеотидная последовательность переводится (транспортируется) в соответствующую последовательность аминокислот, в результате создаётся определённая белковая цепь.

Синтез РНК на ДНК-матрице называется транскрипцией. В результате транскрипции образуются молекулы мРНК, несущие информацию для синтеза белка в клетке, а также транспортные, рибосомные и другие виды молекул РНК, выполняющие структурные и каталитические функции. Синтез этих молекул РНК - копий нуклеотидных последовательностей участков молекулы ДНК - катализируется ферментами, которые называются РНК-полимеразами.

Связь РНК-полимеразы оказывается очень прочной, если РНК-полимераза присоединяется к специфической последовательности ДНК, к так называемому промотору, содержащему старт-сигнал для синтеза РНК, то есть к сайту, с которого этот синтез должен начаться. Реакции, которые из этого вытекают, характеризуются следующим: присоединившись к промотору, РНК-полимераза раскручивает свой участок двойной спирали, обнажая таким образом нуклеотиды на коротком отрезке каждой из двух цепей ДНК. Одна из этих двух разделённых цепей должна стать матрицей для комплементарного спаривания основной ДНК с основаниями поступающих мономеров – рибонуклеозидтрифосфатов. Полимераза соединяет между собой два первых поступающих мономера и тем самым кладёт начало синтезируемой цепи РНК. Затем РНК-полимераза, продвигаясь шаг за шагом вдоль ДНК, раскручивает перед собой спираль ДНК, обнажая всякий раз новый участок матрицы для комплементарного спаривания оснований. Добавляя к растущей цепи РНК по одному нуклеотиду, она постепенно наращивает цепь.

Процесс удлинения цепи РНК продолжается до тех пор, пока фермент не встретит на своём пути еще одну специфическую нуклеотидную последовательность в цепи ДНК, - а именно сигнал терминации транскрипции (стоп-сигнал). Достигнув этой точки, полимераза отделяется и от матричной ДНК, и от вновь синтезированной цепи РНК. Во время продвижения фермента вдоль матричной цепи в его активном центре образуется двойная спираль РНК-ДНК. Позади молекулы полимеразы, закончившей свою работу синтеза ДНК-РНК, немедленно восстанавливается спираль ДНК-РНК, а РНК вытесняется. Каждая завершенная цепь РНК отделяется от ДНК-матрицы в виде свободной одноцепочечной молекулы, в которой число нуклеотидов колеблется от 70 до 10000.

Транскрибируется, как правило, одна из цепей ДНК. Какая из двух цепей будет транскрибироваться, определяется промотором, нуклеотидная последовательность которого ориентирована таким образом, чтобы направить РНК-полимеразу на тот или иной путь.

Известно также, что в определении того, какие участки ДНК будут транскрибироваться РНК-полимеразой, важную роль играют особые белки , регулирующие активность генов. Именно от них в первую очередь и зависит, какие белки будет вырабатывать клетка. Далее, в клетках эукариот большинство РНК-транскриптов ДНК покинут клеточное ядро и перейдут в цитоплазму в виде мРНК, претерпевая существенные изменения - подвергаясь сплайсингу.

Во всех клетках имеется набор транспортных РНК (тРНК) - небольших молекул, размеры которых колеблются от 70 до 90 нуклеотидов. Эти РНК, присоединяясь одним своим концом к специфическому кодону мРНК, а другим присоединяя аминокислоту, кодируемую данным триплетом, позволяют аминокислотам выстраиваться в порядке, диктуемом нуклеотидной последовательностью мРНК.

Каждая тРНК может переносить только одну из 20 аминокислот, используемых в синтезе белка. Транспортную РНК, переносящую глицин, обозначают как тРНК Gly и т.д. Для каждой из 20 аминокислот имеется один тип тРНК. Важно при этом, что каждая аминокислота ковалентно присоединяется к тРНК, содержащей правильный антикодон - трехнуклеотидную последовательность, комплементарную трехнуклеотидному кодону, определяющему эту аминокислоту в молекулу мРНК. Спаривание кодона с антикодоном позволяет каждой аминокислоте включиться в растущую белковую цепь в том порядке, который диктуется нуклеотидной последовательностью мРНК. Так что генетический код используется для перевода (трансляции) нуклеотидных последовательностей нуклеиновых кислот в аминокислотные последовательности белков.



нить мРНК окрашена красным цветом, рибосомы - синим, растущие полипептидные цепи - зелёным. (Фото Dr Elena Kiseleva).

Присоединяясь одним концом к аминокислоте, а другим спариваясь с кодоном, тРНК переводит последовательность нуклеотидов в последовательность аминокислот. Функция тРНК зависит от трёхмерной структуры её молекулы. В каком именно месте будет присоединена к растущей полипептидной цепи данная аминокислота, зависит не от самой аминокислоты , а от присоединившей её молекулы тРНК. Молекула тРНК ковалентно присоединяется именно к той аминокислоте из всех двадцати аминокислот, которая является её настоящим партнером. Механизм этот связан с участием ферментов, называемых аминоацил-тРНК-синтазами, которые присоединяют аминокислоту к соответствующему набору молекул тРНК. Для каждой из аминокислот имеется своя особая синтетаза (всего таких синтетаз 20): одна присоединяет, например, глицин к тРНК Gly , другая - аланин к тРНК Ala и т.д. Таким образом, молекулы тРНК играют роль конечных адаптаторов, переводящих информацию, заключённую в нуклеотидной последовательности нуклеиновой кислоты, на язык белка.

Для осуществления реакций белкового синтеза требуется сложный каталитический стимул. Растущий конец полипептидной цепи должен определённым образом подстраиваться к молекуле мРНК для того, чтобы каждый последующий кодон мРНК точно соединился с антикодоном тРНК, не проскочив ни на один нуклеотид. В противном случае это приведет к сдвигу последовательности считывания.

Более половины массы рибосомы составляет РНК (рРНК), которая играет ключевую роль в каталитической активности рибосомы. В рибосоме имеются три различных участка, с которыми связывается РНК - один для мРНК и два для тРНК. Из двух последних один участок удерживает молекулу тРНК, присоединённую к растущему концу полипептидной цепи, поэтому его называют пептидил-тРНК - связывающим участком, или Р-участком.

Второй участок служит для удержания только прибывшей молекулы тРНК, нагруженной аминокислотой. Его называют аминоацил-тРНК-связывающим участком, или А-участком. К обоим участкам молекула тРНК прочно прикрепляется лишь в том случае, если её антикодон спаривается с комплементарным ему кодоном мРНК. А- и Р-участки располагаются очень близко друг к другу - так, что две связанные с ними молекулы тРНК спариваются с двумя соседними кодонами в молекуле мРНК.

Процесс наращивания полипептидной цепи на рибосомах может рассматриваться как цикл, слагающийся из трёх отдельных этапов:

  1. Молекула аминоацил-тРНК связывается со свободным участком рибосомы, примыкающим к занятому Р-участку. Связывание осуществляется путём спаривания нуклеотидов антикодона с тремя нуклеотидами мРНК, находящимися в А-участке.
  2. На втором этапе происходит отделение карбоксильного конца полипептидной цепи в Р-участке от молекулы тРНК и образуется пептидная связь с аминокислотой, присоединённой молекулой тРНК в А-участке.
  3. Новая пептидил-тРНК переносится в Р-участок рибосомы, в то время как рибосома продвигается вдоль молекулы мРНК ровно на три нуклеотида.

Процесс транслокации, составляющий третий этап, включает в себя и возвращение свободной молекулы тРНК, отделившейся от полипептидной цепи в Р-участке во время второго этапа цитоплазматического пула тРНК. Поэтому после завершения третьего этапа незанятый А-участок может принять новую молекулу тРНК, нагруженную очередной аминокислотой, то есть цикл может начаться снова.

Весьма энергоёмкий процесс. Образование каждой новой пептидной связи сопровождается расположением четырёх высокоэнергетических фосфатных связей. Две из них расходуются, чтобы нагрузить аминокислотой молекулу тРНК, а две - на сам синтез в цикле реакций, протекающих на рибосоме. При завершении цикла пептидилтранфераза присоединяет к пептидил-тРНК не аминокислоту, а молекулу H 2 O, в силу чего карбоксильный конец растущей полипептидной цепи отделяется от молекулы тРНК - белковая цепь оказывается свободной и поступает в цитоплазму.

Таким образом, вновь сформированная после митотического деления клетка наделена видовой преемственностью наследственного материала, в результате перехода его в процессе деления в равном количестве в обе дочерние клетки. Дочерние клетки продолжают эволюционно закреплённый процесс видового метаболизма, приобретая свойства, характерные для клеточной популяции тканевой принадлежности. Поэтому в короткий промежуток вновь сформированные клетки проходят специализацию (дифференцировку) согласно их основной генетически закреплённой принадлежности. Ряд свойств становятся крайне общими для всех клеток, независимо от того, в какой тканевой системе им приходится выполнять свой жизненный цикл. Для выполнения своих функций клетки наделены рядом высокоспециализированных свойств.

Источники:
Цитофизиология / Луценко М.Т. // Новосибирск-Благовещенск, 2011.

В каждой области науки есть своя «синяя птица»; кибернетики мечтают о «думающих» машинах, физики - об управляемых термоядерных реакциях, химики - о синтезе «живого вещества» - белка. Синтез белка долгие годы был темой фантастических романов, символом грядущего могущества химии. Это объясняется и той огромной ролью, какая принадлежит белку в мире живого, и теми трудностями, которые неизбежно вставали перед каждым смельчаком, отважившимся «сложить» из отдельных аминокислот замысловатую мозаику белка. И даже еще не самого белка, а только пептидов.

Разница между белками и пептидами не только терминологическая, хотя молекулярные цепи и тех и других состоят из аминокислотных остатков. На каком-то этапе количество переходит в качество: пептидная цепь - первичная структура - обретает способность сворачиваться в спирали и клубки, образуя вторичную и третичную структуры, характерные уже для живой материи. И тогда пептид становится белком. Четкой границы здесь не существует - на полимерной цепи нельзя поставить демаркационный знак: досель - пептид, отсель - белок. Но известно, например, что адранокортикотропный гормон, состоящий из 39 остатков аминокислот,- это полипептид, а гормон инсулин, состоящий из 51 остатка в виде двух цепей,- это уже белок. Простейший, но все же белок.

Способ соединения аминокислот в пептиды был открыт в начале прошлого века немецким химиком Эмилем Фишером. Но еще долго после этого химики не могли всерьез помышлять не только о синтезе белка или 39-членных пептидов, но даже значительно более коротких цепей.

Процесс синтеза белка

Для того, чтобы соединить между собой две аминокислоты, надо преодолеть немало трудностей. Каждая аминокислота, подобно двуликому Янусу, имеет два химических лица: карбоксильную кислотную группу на одном конце и аминную основную группу - на другом. Если от карбоксила одной аминокислоты отнять группу ОН, а от аминной группы другой - атом водорода, то образовавшиеся при этом два аминокислотных остатка могут соединиться друг с другом пептидной связью, и в результате возникнет простейший из пептидов - дипептид. И отщепится молекула воды. Повторяя эту операцию, можно наращивать длину пептида.

Однако эта, казалось бы, на первый взгляд несложная операция практически трудноосуществима: аминокислоты очень неохотно соединяются друг с другом. Приходится их активировать, химически, и «подогревать» один из концов цепи (чаще всего карбоксильный), и вести реакцию, строго соблюдая необходимые условия. Но это еще не все: вторая сложность состоит в том, что соединяться друг с другом могут не только остатки разных аминокислот, но и две молекулы одной кислоты. При этом строение синтезируемого пептида будет уже отличаться от желаемого. Больше того, каждая аминокислота может иметь не две, а несколько «ахиллесовых пят» - боковых химически активных групп, способных присоединять аминокислотные остатки.

Чтобы не дать реакции свернуть с заданного пути, необходимо закамуфлировать эти ложные мишени - «запечатать» на время осуществляемой реакции все реакционноспособные группы аминокислоты, кроме одной, присоединив к ним так называемые защитные группировки. Если этого не сделать, то цель будет расти не только с обоих концов, но и вбок, и аминокислоты уже не удастся соединить в заданной последовательности. А ведь именно в этом и заключается смысл всякого направленного синтеза.

Но, избавляясь таким образом от одной неприятности, химики столкнулись с другой: защитные группировки после окончания синтеза нужно удалить. Во времена Фишера в качестве «защиты» применялись группировки, которые отщеплялись гидролизом. Однако реакция гидролиза обычно оказывалась слишком сильным «потрясением» для полученного пептида: с трудом построенная его «конструкция» разваливалась как только с нее снимали «строительные леса» - защитные группировки. Лишь в 1932 году ученик Фишера М. Бергманн нашел выход из этого положения: он предложил защищать аминогруппу аминокислоты карбобензоксигруппой, которую можно было удалить без повреждения пептидной цепи.

Синтез белка из аминокислот

В течение последующих лет был предложен ряд так называемых мягких методов «сшивки» аминокислот друг с другом. Однако все они фактически были лишь вариациями на тему метода Фишера. Вариациями, в которых иногда даже трудно было уловить исходную мелодию. Но сам принцип оставался все тем же. И все теми же оставались трудности, связанные с защитой уязвимых групп. За преодоление этих трудностей приходилось расплачиваться увеличением числа стадий реакции: один элементарный акт - соединение двух аминокислот - распадался на четыре этапа. А каждая лишняя стадия - это неизбежные потери.

Если даже предположить, что каждая стадия идет с полезным выходом в 80% (а это хороший выход), то через четыре этапа эти 80% «растают» до 40%. И это при синтезе только дипептида! А если аминокислот будет 8? А если 51, как в инсулине? Прибавьте к этому сложности, связанные с существованием двух оптических «зеркальных» форм молекул аминокислот, из которых в реакции нужна только одна, приплюсуйте проблемы отделения образующихся пептидов от побочных продуктов, особенно в тех случаях, когда они одинаково растворимы. Что же получится в сумме: Дорога в никуда?

И все же эти трудности не останавливали химиков. Погоня за «синей птицей» продолжалась. В 1954 году были синтезированы первые биологически активные гормоны-полипептиды - вазопрессин и окситоцин. В них было по восемь аминокислот. В 1963 году был синтезирован 39-членный полипептид АКТГ - адренокортикотропный гормон. Наконец, химики США, Германии и Китая синтезировали первый белок - гормон инсулин.

Как же так, скажет читатель, трудная дорога, оказывается, привела не в никуда и не куда-нибудь, а к осуществлению мечты многих поколений химиков! Это же эпохальное событие! Верно, это - эпохальное событие. Но давайте оценим его трезво, отрешившись от сенсационности, восклицательных знаков и чрезмерных эмоций.

Никто не спорит: синтез инсулина - огромная победа химиков. Это колоссальный, титанический труд, достойный всякого восхищения. Но вместе с тем эго, по существу, и потолок старой химии полипептидов. Это победа на грани поражения.

Синтез белков и инсулин

В инсулине 51 аминокислота. Чтобы соединить их в нужной последовательности, химикам потребовалось провести 223 реакции. Когда спустя три года после начала первой из них была закончена последняя, выход продукта составлял меньше одной сотой процента. Три года, 223 стадии, сотая доля процента - согласитесь, победа носит чисто символический характер. Говорить о практическом применении этого метода очень трудно: слишком велики связанные с его реализацией расходы. А ведь в конечном счете речь идет о синтезе не драгоценных реликвий славы органической химии, а о выпуске жизненно важного лекарственного препарата, который необходим тысячам людей во всем мире. Так классический метод синтеза полипептидов исчерпал себя на первом же, самом простом белке. Значит, «синяя птица» вновь ускользнула из рук химиков?

Новый метод синтеза белка

Примерно за полтора года до того, как мир узнал о синтезе инсулина, в печати промелькнуло еще одно сообщение, которое вначале не привлекло особого внимания: американский ученый Р. Мэрифилд предложил новый метод синтеза пептидов. Поскольку сам автор поначалу не дал методу должной оценки, и в нем было много недоработок, выглядел он в первом приближении даже хуже существовавших. Однако уже в начале 1964 года, когда Мэрифилду удалось с помощью своего метода осуществить полный синтез 9-членного гормона с полезным выходом в 70%, ученые изумились: 70% после всех этапов - это 9% полезного выхода на каждой стадии синтеза.

Основная идея нового метода заключается в том, что растущие цепочки пептидов, которые раньше были брошены на произвол хаотического движения в растворе, теперь привязывались одним концом к твердому носителю - их как бы заставляли стать на якорь в растворе. Мэрифилд брал твердую смолу и к ее активным группам «привязывал» за карбонильный конец первую из собираемых в пептид аминокислоту. Реакции шли внутри отдельных частичек смолы. В «лабиринтах» ее молекул сначала появлялись первые короткие ростки будущего пептида. Затем в сосуд вводили вторую аминокислоту, ее молекулы сшивались своими карбонильными концами со свободными аминными концами «привязанной» аминокислоты, и в частицах вырастал еще один «этаж» будущего «здания» пептида. Так, этап за этапом, постепенно наращивался весь пептидный полимер.

Новый метод имел несомненные преимущества: прежде всего в нем была решена проблема отделения ненужных продуктов после присоединения каждой очередной аминокислоты - эти продукты легко смывались, а пептид оставался пришитым к гранулам смолы. Одновременно исключалась проблема растворимости растущих пептидов - один из главных бичей старого метода; раньше они нередко выпадали в осадок, практически переставая участвовать в процессе роста. Пептиды, «снимаемые» после окончания синтеза с твердой подложки, получались почти все одинакового размера и строения, во всяком случае, разброс в структуре был меньше, чем при классическом методе. И соответственно больше полезный выход. Благодаря этому методу синтез пептидов - кропотливый, трудоемкий синтез - легко поддается автоматизации.

Мэрифилд соорудил несложный автомат, который сам по заданной программе проделывал все положенные операции - подачу реагентов, смешивание, слив, промывку, отмер дозы, добавление новой порции и так далее. Если по старому методу на присоединение одной аминокислоты приходилось травить 2-3 дня, то Мэрифилд на своем автомате соединял за день 5 аминокислот. Разница - в 15 раз.

В чем состоят трудности синтеза белков

Метод Мэрифилда, названный твердофазным, или гетерогенным, сразу же был принят на вооружение химиками всего мира. Однако уже через короткое время стало ясно: новый метод вместе с крупными достоинствами имеет и ряд серьезных недостатков.

По мере роста пептидных цепей может случиться так, что в какой-то из них окажется пропущенным, скажем, третий «этаж» - третья по счету аминокислота: ее молекула не дойдет до места соединения, застряв где-нибудь по дороге в структурных «дебрях» твердого полимера. И тогда, даже если все остальные аминокислоты, начиная с четвертой, выстроятся в должном порядке, это уже не спасет положения. Полученный полипептид по своему составу, а следовательно, и по своим свойствам не будет иметь ничего общего с получаемым веществом. Произойдет то же самое, что и при наборе телефонного номера; стоит пропустить одну цифру - и нам уже не поможет тот факт, что все остальные мы набрали правильно. Отделить же такие ложные цепи от «настоящих» практически невозможно, и препарат оказывается засоренным примесями. Кроме того, оказывается, что синтез нельзя вести на какой угодно смоле - ее нужно тщательно подбирать, так как свойства растущего пептида зависят в какой-то мере от свойств смолы. Поэтому ко всем этапам синтеза белка необходимо подходить максимально тщательно.

Синтез белка ДНК, видео

И под конец, предлагаем вашему вниманию образовательное видео о том, как происходит синтез белка в молекулах ДНК.

1. Какие функции выполняют в клетке белки?

Ответ. Белки играют исключительно большую роль в процессах жизнедеятельности клетки и организма, им свойственны следующие функции.

1. Структурная. Входят в состав внутриклеточных структур‚ тканей и органов. Например, коллаген и эластин служат компонентами соединительной ткани: костей‚ сухожилий‚ хрящей; фиброин входит в состав шелка‚ паутины; кератин входит в состав эпидермиса и его производных (волосы‚ рога‚ перья). Образуют оболочки (капсиды) вирусов.

2. Ферментативная. Все химические реакции в клетке протекают при участии биологических катализаторов - ферментов (оксидоредуктазы, гидролазы, лигазы, трансферазы, изомеразы, и лиазы).

3. Регуляторная. Например, гормоны инсулин и глюкагон регулируют обмен глюкозы. Белки–гистоны участвуют в пространственной организации хроматина, и тем самым влияют на экспрессию генов.

4. Транспортная. Гемоглобин переносит кислород в крови позвоночных, гемоцианин в гемолимфе некоторых беспозвоночных, миоглобин - в мышцах. Сывороточный альбумин служит для транспорта жирных кислот‚ липидов и т. п. Мембранные транспортные белки обеспечивают активный транспорт веществ через клеточные мембраны. Цитохромы осуществляют перенос электронов по электронтранспортным цепям митохондрий и хлоропластов.

5. Защитная. Например, антитела (иммуноглобулины) образуют комплексы с антигенами бактерий и с инородными белками. Интерфероны блокируют синтез вирусного белка в инфицированной клетке. Фибриноген и тромбин участвуют в процессах свертывания крови.

6. Сократительная (двигательная). Белки актин и миозин обеспечивают процессы мышечного сокращения и сокращения элементов цитоскелета.

7. Сигнальная (рецепторная). Белки клеточных мембран входят в состав рецепторов и поверхностных антигенов.

Запасающие белки. Казеин молока, альбумин куриного яйца, ферритин (запасает железо в селезенке).

8. Белки-токсины. Дифтерийный токсин.

9. Энергетическая функция. При распаде 1 г белка до конечных продуктов обмена (СО2, Н2О, NH3, Н2S, SО2) выделяется 17‚6 кДж или 4‚2 ккал энергии.

2. Из чего состоят белки?

Ответ. Белки́ - высокомолекулярные органические вещества, состоящие из аминокислот, соединённых в цепочку пептидной связью. В живых организмах аминокислотный состав белков определяется генетическим кодом, при синтезе в большинстве случаев используется 20 стандартных аминокислот. Множество их комбинаций создают молекулы белков с большим разнообразием свойств.

Вопросы после §26

1. Что такое ген?

Ответ. Ген - материальный носитель наследственной информации, совокупность которых родители передают потомкам во время размножения. В настоящее время, в молекулярной биологии установлено, что гены - это участки ДНК, несущие какую-либо целостную информацию - о строении одной молекулы белка или одной молекулы РНК. Эти и другие функциональные молекулы определяют рост и функционирование организма.

2. Какой процесс называется транскрипцией?

Ответ. Носителем генетической информации является ДНК, расположенная в клеточном ядре. Сам же синтез белка происходит в цитоплазме на рибосомах. Из ядра в цитоплазму информация о структуре белка поступает в виде информационной РНК (иРНК). Для того чтобы синтезировать иРНК, участок двуцепочечной ДНК раскручивается, а затем на одной из цепочек ДНК по принципу комплементарности синтезируется молекула иРНК. Это происходит следующим образом: против, например, Г молекулы ДНК становится Ц молекулы РНК, против А молекулы ДНК – У молекулы РНК (вспомните, что вместо тимина РНК несет урацил, или У), против Т молекулы ДНК – А молекулы РНК и против Ц молекулы ДНК – Г молекулы РНК. Таким образом, формируется цепочка иРНК, представляющая собой точную копию второй (нематричной) цепочки ДНК (только вместо тимина включен урацил). Так информация о последовательности аминокислот в белке переводится с «языка ДНК» на «язык РНК». Этот процесс получил название транскрипции.

3. Где и как происходит биосинтез белка?

Ответ. В цитоплазме происходит процесс синтеза белка, который по-другому называют трансляцией. Трансляция – это перевод последовательности нуклеотидов молекулы иРНК в последовательность аминокислот молекулы белка. С тем концом иРНК, с которого должен начаться синтез белка, взаимодействует рибосома. При этом начало будущего белка обозначается триплетом АУГ, который является знаком начала трансляции. Так как этот кодон кодирует аминокислоту метионин, то все белки (за исключением специальных случаев) начинаются с метионина. После связывания рибосома начинает двигаться по иРНК, задерживаясь на каждом ее участке, который включает в себя два кодона (т. е. 3 + 3 = 6 нуклеотидов). Время задержки составляет всего 0,2 с. За это время молекула тРНК, антикодон которой комплементарен кодону, находящемуся в рибосоме, успевает распознать его. Та аминокислота, которая была связана с этой тРНК, отделяется от «черешка» и присоединяется с образованием пептидной связи к растущей цепочке белка. В тот же самый момент к рибосоме подходит следующая тРНК, антикодон которой комплементарен следующему триплету в иРНК, и следующая аминокислота, принесенная этой тРНК, включается в растущую цепочку. После этого рибосома сдвигается по иРНК, задерживается на следующих нуклеотидах, и все повторяется сначала.

4. Что такое стоп-кодон?

Ответ. Стоп-кодоны (УАА, УАГ или УГА) не кодируют аминокислот, они только лишь показывают, что синтез белка должен быть завершен. Белковая цепочка отсоединяется от рибосомы, выходит в цитоплазму и формирует присущую этому белку вторичную, третичную и четвертичную структуры

5. Сколько видов тРНК участвует в синтезе белков в клетке?

Ответ. Не менее 20 (количество аминокислот) , не более 61 (количество смысловых кодонов). Обычно около 43 тРНК у прокариот. У человека около 50 различных тРНК обеспечивают включение аминокислот в белок.

6. Из чего состоит полисома?

Ответ. Клетке необходима не одна, а много молекул каждого белка. Поэтому как только рибосома, первой начавшая синтез белка на молекуле иРНК, продвигается вперед, тут же на эту иРНК нанизывается вторая рибосома, которая начинает синтезировать такой же белок. На ту же иРНК может быть нанизана и третья, и четвертая рибосома, и т. д. Все рибосомы, синтезирующие белок на одной молекуле иРНК, называются полисомой.

7. Требуют ли процессы синтеза белка затрат энергии? Или, наоборот, в процессах синтеза белка происходит выделение энергии?

Ответ. Как любой синтетический процесс, синтез белка - это эндотермическая реакция и, значит, требует энергозатрат. Биосинтез белка представляет цепь синтетических реакций: 1) синтез и-РНК; 2) соединение аминокислот с т-РНК; 3) "сборку белка". Все эти реакции требуют больших энергетических затрат - до 24,2 ккал/моль. Энергия для синтеза белка обнеспечивается реакцией расщепления АТФ.

Белки играют очень важную роль в жизнедеятельности организмов, выполняют защитные, структурные, гормональные, энергетические функции. Обеспечивают рост мышечной и костной ткани. Белки информируют о строении клетки, о её функциях и биохимических свойствах, входят в состав ценных, полезных организму продуктов питания (яиц, молочных продуктов, рыбы, орехов, бобовых, ржи и пшеницы). Усвояемость такой пищи объясняется биологической ценностью. При равном показателе количества белка легче будет усваиваться тот продукт, чья ценность выше. Дефектные полимеры должны удаляться из организма и заменяться новыми. Этот процесс протекает при синтезе белков в клетках.

Какими бывают белки

Вещества, состоящие только из остатков аминокислот, называются простыми белками (протеинами). В случае необходимости используется их энергетическое свойство, поэтому людям, ведущим здоровый образ жизни, зачастую дополнительно нужен прием протеина. Сложные же белки, протеиды, имеют в своем составе простой белок и небелковую часть. Десять аминокислот в белке являются незаменимыми, это означает, что организм не может синтезировать их самостоятельно, они поступают из пищи, другой же десяток - заменимый, то есть их можно создать из других аминокислот. Так начинается жизненно необходимый для всех организмов процесс.

Основные этапы биосинтеза: откуда берутся белки

Новые молекулы берутся в результате биосинтеза - химической реакции соединения. Существует два основных этапа синтеза белков в клетке. Это транскрипция и трансляция. Транскрипция происходит в ядре. Это считывание с ДНК (дезоксирибонуклеиновой кислоты), которая несет информацию о будущем белке, на РНК (рибонуклеиновую кислоту), которая переносит эту информацию с ДНК в цитоплазму. Происходит это по причине того, что ДНК непосредственно в биосинтезе участия не принимает, она только несет сведения, не имея способности выходить в цитоплазму, где синтезируется белок, и выполняя только функцию носителя генетической информации. Транскрипция же позволяет считать данные с матрицы ДНК на РНК по принципу комплементарности.

Роль РНК и ДНК в процессе

Итак, запускает синтез белков в клетках цепочка ДНК, которая несет информацию о каком-либо конкретном белке и называется геном. Цепочка ДНК в процессе транскрипции расплетается, то есть её спираль начинает распадаться в линейную молекулу. С ДНК информация должна преобразоваться на РНК. Напротив тимина в данном процессе должен становиться аденин. Цитозин же имеет в качестве пары гуанин, точно так же, как ДНК. Напротив аденина РНК становится урацил, потому как в РНК такого нуклеотида, как тимин, не существует, он заменяется просто урациловым нуклеотидом. С гуанином соседствует цитозин. Напротив аденина становится урацил, а в паре с тимином располагается аденин. Эти молекулы РНК, которые становятся напротив, называются информационными РНК (иРНК). Они способны через поры выходить из ядра в цитоплазму и рибосомы, которые, собственно, и выполняют функцию синтеза белков в клетках.

О сложном простыми словами

Теперь же совершается сборка из аминокислотных последовательностей полипептидной цепочки белка. Транскрипцией можно назвать считывание информации о будущем белке с матрицы ДНК на РНК. Это можно определить как первый этап. После того как РНК выходит из ядра, она должна попасть к рибосомам, где происходит второй этап, который называется трансляцией.

Трансляция - это уже переход РНК, то есть перенос информации с нуклеотидов на молекулу белка, когда РНК говорит о том, какая последовательность аминокислот должна быть в веществе. В таком порядке информационная РНК попадает в цитоплазму к рибосомам, которые осуществляют синтез белков в клетке: А (аденин) - Г (гуанин) - У (урацил) - Ц (цитозин) - У (урацил) - А (аденин).

Зачем нужны рибосомы

Для того чтобы произошла трансляция и в результате образовался белок, нужны такие компоненты, как сама информационная РНК, транспортная РНК, а также рибосомы в качестве "фабрики", на которой производится белок. В данном случае функционируют две разновидности РНК: информационная, которая образовалась в ядре с ДНК, и транспортная. Молекула второй кислоты имеет вид клевера. Этот "клевер" присоединяет к себе аминокислоту и несет её к рибосомам. То есть он выполняет транспортировку органических соединений непосредственно к "фабрике" по их образованию.

Как работает рРНК

Также существуют рибосомальные РНК, которые входят в состав самой рибосомы и выполняют синтез белка в клетке. Получается, что рибосомы являются немембранными структурами, они не имеют оболочек, как, например, ядро или эндоплазматическая сеть, а состоят просто из белков и рибосомальных РНК. Что же происходит, когда последовательность из нуклеотидов, то есть информационная РНК, попадает к рибосомам?

Транспортная РНК, которая находится в цитоплазме, подтягивает к себе аминокислоты. Откуда же взялись аминокислоты в клетке? А образуются они вследствие расщепления белков, которые поступают внутрь с пищей. Эти соединения переносятся током крови к клеткам, где происходит продуцирование необходимых для организма белков.

Конечный этап синтеза белков в клетках

Аминокислоты плавают в цитоплазме так же, как и транспортные РНК, и когда происходит непосредственно сборка полипептидной цепи, эти транспортные РНК начинают с ними соединяться. Однако не во всякой последовательности и далеко не любая транспортная РНК может соединиться со всеми видами аминокислот. Существует определенный участок, к которому присоединяется необходимая аминокислота. Второй же участок транспортной РНК называется антикодоном. Этот элемент состоит из трех нуклеотидов, которые комплементарны последовательности нуклеотидов в информационной РНК. Для одной аминокислоты необходимо три нуклеотида. Например, какой-либо условный белок состоит для упрощения из всего лишь двух аминокислот. Очевидно, что в основном белки имеют очень длинную структуру, состоят из многих аминокислот. Цепь А - Г - У называется триплетом, или кодоном, к нему будет присоединяться транспортная РНК в виде клевера, на конце которого будет находиться определенная аминокислота. К следующему триплету Ц - У - А будет присоединяться еще одна тРНК, которая будет содержать совершенно другую аминокислоту, комплементарную данной последовательности. В таком порядке будет происходить дальнейшая сборка полипептидной цепочки.

Биологическое значение синтеза

Между двумя аминокислотами, находящимися на концах "клеверов" каждого триплета, образуется пептидная связь. На этом этапе транспортная РНК уходит в цитоплазму. К триплетам присоединяется затем следующая транспортная РНК с другой аминокислотой, которая образует с предыдущими двумя полипептидную цепь. Этот процесс повторяется до момента, когда набирается необходимая последовательность аминокислот. Таким образом происходит синтез белка в клетке, и образуются ферменты, гормоны, кровяные вещества и т. д. Не во всякой клетке образуется любой белок. Каждая клетка может образовать определенный белок. Например, в эритроцитах будет образовываться гемоглобин, а клетками поджелудочной железы будут синтезироваться гормоны и разнообразные ферменты, расщепляющие пищу, которая попадает в организм.

В мышцах же будет образовываться белок актин и миозин. Как видно, процесс синтеза белка в клетках многоэтапен и сложен, что говорит о его значимости и необходимости для всего живого.

Биосинтез белков идет в каждой живой клетке. Наиболее активен он в молодых растущих клетках, где синтезируются белки на построение их органоидов, а также в секреторных клетках, где синтезируются белки-ферменты и белки-гормоны.

Основная роль в определении структуры белков принадлежит ДНК. Отрезок ДНК, содержащий информацию о структуре одного белка, называют геном. Молекула ДНК содержит несколько сотен генов. В молекуле ДНК записан код о последовательности аминокислот в белке в виде определенно сочетающихся нуклеотидов. Код ДНК удалось расшифровать почти полностью. Сущность его состоит в следующем. Каждой аминокислоте соответствует участок цепи ДНК из трех рядом стоящих нуклеотидов.

Например, участок Т-Т-Т соответствует аминокислоте лизину, отрезок А-Ц-А - цистину, Ц-А-А - валину н т. д. Разных аминокислот - 20, число возможных сочетаний из 4 нуклеотидов по 3 равно 64. Следовательно, триплетов с избытком хватает для кодирования всех аминокислот.

Синтез белка - сложный многоступенчатый процесс, представляющий цепь синтетических реакций, протекающих по принципу матричного синтеза.

Поскольку ДНК находится в ядре клетки, а синтез белка происходит в цитоплазме, существует посредник, передающий информацию с ДНК на рибосомы. Таким посредником является и-РНК. :

В биосинтезе белка определяют следующие этапы, идущие в разных частях клетки:

  1. Первый этап - синтез и-РНК происходит в ядре, в процессе которого информация, содержащаяся в гене ДНК, переписывается на и-РНК. Этот процесс называется транскрипцией (от лат. «транскриптик» — переписывание).
  2. На втором этапе происходит соединение аминокислот с молекулами т-РНК, которые последовательно состоят из трех нуклеотидов - антикодонов, с помощью которых определяется свой триплет-кодон.
  3. Третий этап - это процесс непосредственного синтеза полипептидных связей, называемый трансляцией. Он происходит в рибосомах.
  4. На четвертом этапе происходит образование вторич ной и третичной структуры белка, то есть формирование окончательной структуры белка.

Таким образом, в процессе биосинтеза белка образуются новые молекулы белка в соответствии с точной информацией, заложенной в ДНК. Этот процесс обеспечивает обновление белков, процессы обмена веществ, рост и развитие клеток, то есть все процессы жизнедеятельности клетки.

Хромосомы (от греч. «хрома» - цвет, «сома» - тело) - очень важные структуры ядра клетки. Играют главную роль в процессе клеточного деления, обеспечивая передачу наследственной информации от одного поколения к другому. Они представляют собой тонкие нити ДНК, связанные с белками. Нити называются хроматидами, состоящими из ДНК, основных белков (гистонов) и кислых белков.

В неделящейся клетке хромосомы заполняют весь объем ядра и не видны под микроскопом. Перед началом деления происходит спирализация ДНК и каждая хромосома становится различимой под микроскопом. Во время спирализации хромосомы сокращаются в десятки тысяч раз. В таком состоянии хромосомы выглядят как две лежащие рядом одинаковые нити (хроматиды), соединенные общим участком - центромерой.

Для каждого организма характерно постоянное количество и структура хромосом. В соматических клетках хромосомы всегда парные, то есть в ядре есть две одинаковые хромосомы, составляющие одну пару. Такие хромосомы называют гомологичными, а парные наборы хромосом в соматических клетках называют диплоидными.

Так, диплоидный набор хромосом у человека состоит из 46 хромосом, образуя 23 пары. Каждая пара состоит из двух одинаковых (гомологичных) хромосом.

Особенности строения хромосом позволяют выделить их 7 групп, которые обозначаются латинскими буквами А, В, С, D, Е, F, G. Все пары хромосом имеют порядковые номера.

У мужчин и женщин есть 22 пары одинаковых хромосом. Их называют аутосомы. Мужчина и женщина отличаются одной парой хромосом, которые называют половыми. Они обозначаются буквами — большая X (группа С) и маленькая Y (группа С,). В женском организме 22 пары аутосом и одна пара (XX) половых хромосом. У мужчин — 22 пары аутосом н одна пара (XY) половых хромосом.

В отличие от соматических клеток, половые клетки содержат половинный набор хромосом, то есть содержат по одной хромосоме каждой пары! Такой набор называют гаплоидным. Гаплоидный набор хромосом возникает в процессе созревания клеток.