Литейные вакуумные индукционные печи. Индукционные печи. Виды и работа. Применение и особенности

  • 13.06.2019

Мы уже рассказывали об индукционной технологии . Заведения общественного питания всё чаще оснащают свои кухни индукционными плитами и духовыми шкафами. Несмотря на высокую стоимость такого оборудования, преимущества от его использования вполне очевидны.

Нашла применение эта технология и в сфере, совсем не связанной с приготовлением пищи - металлургии . Индукционные печи успешно применяются не только в промышленной плавке металла (где постепенно приходят на смену традиционным печам), но и активно используются на небольших металлургических предприятиях.

Технология

Как мы уже знаем, в индукционных установках (и плавильные печи не исключение) нагрев объекта(-ов) происходит благодаря действию электромагнитного поля. Однако плавка металла - процесс высокотехнологичный , и потому установки для него имеют свои конструкционные и технологические особенности.

Состоит индукционная печь из индуктора, каркаса, камеры (тигеля) для нагрева (плавки), вакуумной системы (опционально) и механизмов наклона печи или перемещения нагреваемых изделий в пространстве. Плавильный тигель, обычно, имеет удобную цилиндрическую форму и выполнен из огнеупорного материала. Распложен он в полости индуктора, подключенного к источнику переменного тока. Плавится металлическая шихта, помещенная в тигель, за счет поглощения электромагнитной энергии.

Достоинства и недостатки

Главным достоинством, безусловно, является отсутствие в процессе нагрева промежуточных стадий . Тепло сразу передается объекту. Это экономит и время, и электроэнергию.

Печь быстро плавит мелкую шихту. При этом температура в камере распределяется равномерно без местных перегревов. Тем самым обеспечивается однородность химического состава в многокомпонентных сплавах.

Одна из отличительных особенностей индукционной печи - возможность создания в установке любой атмосферы (окислительной, восстановительной, нейтральной). И это при любом давлении .

Наконец, оптимальная форма тигля и его хорошая защита от термических и механических повреждений позволяют полностью сливать расплавленный металл из установки.

Индукционные печи отличает простота и удобство в управлении, регулировке, обслуживании. А возможность автоматизации основных процессов делает эти установки весьма высокопроизводительными.

Из недостатков специалисты выделяют только два момента. Во-первых, низкую температуру шлаков , передаваемых на расплав для его технологической обработки. Дело в том, что шлак в установке разогревается от металла и, следовательно, его температура всегда ниже. Во-вторых, у небольших (компактных) установок слабым местом является футеровка (термостойкость и защита от механических повреждений). При высоких температурах расплава во время полного слива металла может происходить резкое колебание температуры футировки .

Виды печей

На самом деле их много, т. к. эти установки находят свое применение в самых различных областях. К примеру, в стоматологии и ювелирном производстве. Поэтому мы расскажем только о наиболее востребованных видах.

Современные индукционные печи способны плавить металл от 5 кг до нескольких десятков тонн. Говорить о промышленных вариантах смысла не имеет. Такие мощные комплексы - тема для отдельного материала. А вот о компактных установках, доступных небольшим фирмам, поговорим подробнее.

Индукционные тигельные печи до 200 кг плавки

Эти установки с транзисторным преобразователем используются для плавки от 5 до 200 кг цветных металлов и от 5 до 100 кг черных металлов. Их главное достоинство - мобильность. При необходимости они легко переставляются с места на место.

Печи комплектуются универсальным среднечастотным транзисторным высоковольтным преобразователем. Поэтому, если есть ограничения по подключаемой мощности, то её можно легко отрегулировать.

Применяются установки для нагрева массивных деталей перед кузнечной обработкой либо их глубокой закалки . Ну и, конечно, для плавки металлов. Графитовые тигли используются для плавки стекла, кремния, а также стали и чугуна, которые обладают ферромагнитными свойствами. Керамические тигли - для плавки меди, латуни, бронзы, золота и серебра. Стальные и чугунные тигли используются для плавки алюминия.

Вообще, КПД такой печи доходит до 98%. Время плавки - не более 1 часа. Сталь, выплавленная в индукционной установке (и даже компактной), на 30% крепче, выплавленной в обычной печи за счет более высокой однородности сплава.

Однако нельзя не сказать о некоторых недостатках. Из-за небольшой толщины тигля и, как уже говорилось выше, проблем с футеровкой происходит быстрая потеря тепла . Профессионалы советуют на малых установках производить плавку как можно быстрее, а последующую плавку желательно на горячем тигле. Другим неудобством является отсутствие в комплекте поставки системы водоохлаждения. Её, к сожалению, придется приобретать отдельно.

Тем не менее, по мнению специалистов, приобретение ИП с весом плавки до 200 кг - это один из лучших вариантов начала собственного металлургического дела или расширения уже существующего.

Вакуумные индукционные печи до 200 кг плавки

Печи с вакуумной обработкой металла применяются для образования сплавов точного химического состава. Полученная в них высококачественная сталь используется в продукции с высокой добавленной стоимостью.

Плавка в вакууме позволяет получить более чистые металлы и сплавы. Происходит это, во-первых, за счет интенсивного удаления газов и примесей, которые входят в состав исходных материалов. Во-вторых, за счет почти полного слияния присаживаемых компонентов с расплавливаемым материалом. Тогда как при воздушной плавке часть компонентов теряется.

Наибольшее распространение сегодня получили вакуумные печи с наклоняющимся тиглем внутри неподвижного кожуха. Их основные преимущества: возможность заливки металла в любое число изложниц или форм, удобство наблюдения за процессом разливки благодаря неподвижности смотровых окон и др.

Современные вакуумные печи имеют различные приспособления, позволяющие без нарушения вакуума производить различные технологические операции. Например, бункер для дополнительных порций шихты, дозаторы для введения в тигель в определенном порядке присадочных материалов, устройства для измерения температуры жидкого металла термопарой и для взятия его проб, скребки для зачистки тигля после слива металла и пр.

Не стоит пугаться сложности освоения установок. На самом деле технологии в производстве индукционных печей достигли такого уровня, что ИП способны работать безостановочно 24 часа, а квалификация оператора может быть минимальной.

Резюме

Производителей индукционных плавильных печей множество. Но лидером, и в этом нет ничего удивительного, является Китай . Поднебесная уже давно занимает мировое первенство по производству металлопроката. Не уступает, а в чем-то даже и превосходит китайское оборудование модельный ряд российских производителей. Наше Отечество, безусловно, также сильно своими металлургическими достижениями, поэтому потенциальному покупателю выбирать есть из чего.

Цены на печи примерно одинаковы и начинаются от 250 тысяч рублей . При этом не стоит бояться отсутствия каких-либо гарантий на китайское оборудование. Не тот случай. Здесь как раз всё в порядке. На ИП есть и гарантия и даже сервис-центры по всему миру.

Индукционная печь используется для плавки цветных и черных металлов. Агрегаты такого принципа действия применяют в следующих сферах: от тончайшего ювелирного дела до промышленной плавки металлов в крупных размерах. В данной статье будут рассмотрены особенности различных индукционных печей.

Индукционные печи для плавки металла

Принцип работы

Индукционный нагрев положен в основу действия печи. Другими словами, электрический ток образовывает электромагнитное поле и получается тепло, которое используется в промышленных масштабах. Этот закон физики изучается в последних классах общеобразовательной школы. Но понятие электрического агрегата и электромагнитных индукционных котлов нельзя путать. Хоть в основе работы и там и тут лежит электричество.

Как это происходит

Генератор подключается к источнику переменного тока, который поступает в него через индуктор, находящийся внутри. Конденсатор задействуется для создания контура колебания, в основе которого лежит постоянная рабочая частота, на которую настраивается система. При возрастании напряжения в генераторе до предела в 200 В индуктор создает магнитное поле переменного действия.

Замыкание цепи происходит, чаще всего, посредством сердечника из ферромагнитного сплава. Переменное магнитное поле начинает взаимодействие с материалом заготовки и создает мощный поток электронов. После вступления в индукционное действие электропроводящего элемента в системе происходит возникновение остаточного напряжения , которое в конденсаторе способствует возникновению вихревого тока. Энергия вихревого тока преобразовывается в тепловую энергию индуктора и происходит нагревание до высоких температур плавления искомого металла.

Тепло, производимое индуктором, применяют:

  • для расплавления мягких и твердых металлов;
  • для закаливания поверхности металлических деталей (например, инструмента);
  • для обработки в термическом режиме уже произведенных деталей;
  • бытовых потребностей (обогрев и кулинария).

Краткая характеристика различных печей

Разновидности приборов

Индукционные тигельные печи

Является наиболее распространенным типом печного индукционного нагрева. Отличительной чертой, отличной от других видов является то, что в ней переменное магнитное поле появляется при отсутствии стандартного сердечника. Тигель в форме цилиндра размещается внутри индукторной полости . Печь, или тигель изготавливается из материала, который прекрасно сопротивляется огню и подключается к переменному электрическому току.

Положительные аспекты

Тигельные агрегаты относят к экологически чистым источникам тепла , окружающая среда не загрязняется от плавки металлов.

В работе тигельных печей присутствуют недостатки:

  • при технологической обработке используются шлаки пониженной температуры;
  • произведенная футеровка тигельных печей имеет низкую стойкость против разрушения, больше всего это заметно при резких скачках температур.

Имеющиеся недостатки не представляют особенных трудностей, достоинства тигельного индукционного агрегата для плавки металла очевидны и сделали такой тип приборов популярным и востребованным среди широкого круга потребителей.

Канальные печи индукционной плавки

Такой тип нашел широкое применение в плавильном деле цветных металлов. Эффективно используется для меди и медных сплавов на основе латуни, мельхиора, бронзы. Активно плавят в канальных агрегатах алюминий, цинк и сплавы в составе этих металлов. Широкое использование печей этого типа ограничено из-за невозможности выполнить футеровку, стойкую к разрушениям, на внутренних стенках камеры.

Расплавленный металл в канальных печах индукционного типа совершает тепловое и электродинамическое движение , что обеспечивает постоянную однородность смешивания компонентов сплава в печной ванне. Использование канальных печей индукционного принципа оправдано в случаях, если к расплавленному металлу и изготовленным слиткам предъявляются особые требования. Сплавы получаются качественными в плане коэффициента насыщения газами, присутствия в металле органических и синтетических примесей.

Индукционные канальные печи работают по типу миксера и предназначаются для выравнивания состава, поддержки постоянной температуры процесса, и выбора скорости разлива в кристаллизаторы или формы. Для каждого сплава и состава литья существуют параметры специальной шихты.

Достоинства

  • подогревание сплава происходит в нижней части, к которой нет воздушного доступа, что уменьшает испарение с верхней поверхности, нагретой до минимальной температуры;
  • канальные печи относят к экономичным индукционным печам, так как происходящее расплавление обеспечивается маленьким расходом электрической энергии;
  • печь имеет высокий коэффициент полезного действия благодаря применению в работе замкнутого контура магнитного провода;
  • постоянная циркуляция в печи расплавленного металла вызывает ускорение плавильного процесса и способствует однородности перемешивания компонентов сплава.

Недостатки

  • стойкость каменной внутренней футеровки снижается при использовании высоких температур;
  • футеровка разрушается при плавлении химически агрессивных сплавов из бронзы, олова и свинца.
  • при плавлении загрязненной низкосортной шихты происходит засорение каналов;
  • поверхностный шлак на ванне не нагревается до высокой температуры, что не позволяет проводить операции в промежутке между металлом и укрытием и расплавлять стружку и скрап;
  • канальные агрегаты плохо переносят перерывы в работе, что заставляет постоянно хранить в жерле печи значительное количество жидкого сплава.

Полное удаление расплавленного металла из печи ведет к ее быстрому растрескиванию. По этой же причине невозможно выполнить быструю перестройку с одного сплава на другой , приходится делать несколько промежуточных плавок, получивших название балластных.

Вакуумные печи индукционного действия

Этот вид имеет широкое применение для плавления сталей высокого качества и никелевых, кобальтовых и железных сплавов жаростойкого качества. Агрегат успешно справляется с плавкой цветных металлов. В вакуумных агрегатах варят стекло, обрабатывают высокой температурой детали, производят монокристаллы .

Печь относят к высокочастотному генератору, расположенному в изолированном от внешней среды индукторе, пропускающем ток высокой частоты. Для создания вакуума из него насосами откачивают воздушные массы. Все операции по введению добавок, загрузке шихты, выдаче металла производится автоматическими механизмами с электрическим или гидравлическим управлением. Из вакуумных печей получают сплавы с небольшими примесями кислорода, водорода, азота, органики. Результат намного превосходит открытые печи индукционного действия.

Жаропрочную сталь из вакуумных печей применяют в инструментальном и оружейном производстве . Некоторые сплавы из никеля, с содержанием никеля и титана являются химически активными, и получить их в других видах печей проблематично. Вакуумные печи выполняют розлив металла поворотом тигеля во внутреннем пространстве кожуха или вращением камеры с неподвижно закрепленной печью. Некоторые модели имеют в дне открывающееся отверстие для слива металла в установленную емкость.

Тигельные печи с транзисторным преобразователем

Применяют для ограниченного веса цветных металлов. Они мобильные, имеют небольшой вес и с легкостью переставляются с места на место. В комплектацию печи входит высоковольтный транзисторный преобразователь универсального действия . Позволяет подобрать мощность, рекомендуемую для подключения в сети, а соответственно ей тип преобразователя, который необходим в этом случае с изменением параметров веса сплава.

Транзисторная индукционная печь широко применяется для металлургической обработки. С ее помощью нагревают детали в кузнечном деле, закаляют металлические предметы. Тигли в транзисторных печах выполняют из керамики или графита, первые предназначены плавить ферромагнитные металлы, такие как чугун или сталь. Графит устанавливается для плавления латуни, меди, серебра, бронзы и золота. На них плавят стекло и кремний. Алюминий хорошо плавится посредством чугунных или стальных тиглей.

Что такое футеровка печей индукционного действия

Ее предназначение состоит в защите печного кожуха от разрушающего действия высоких температур. Побочным действием является сохранение тепла, следовательно, повышается результативность процесса .

Тигель в конструкции индукционной печи выполняется одним из способов:

  • способом выемки в маленьких по объему печах;
  • набивным способом из огнеупорного материала в виде кладки;
  • комбинированным, сочетающим керамику и прокладку буферного слоя в промежутке кладки и индикатора.

Футеровка выполняется из кварцита, корунда, графита, шамотного графита, магнезита. Во все эти материалы домешивают добавки, улучшающих характеристики футеровки, уменьшающих изменения объема, улучшающих спекание, увеличивающие стойкость слоя к агрессивным материалам.

Для выбора того или иного материала для футеровки учитывают ряд сопутствующих условий , а именно, вид металла, цену и огнеупорные свойства тигля, срок службы состава. Правильно подобранный состав футеровки должен обеспечить технические требования для проведения процесса:

  • получение слитков высокого качества;
  • наибольшее количество полноценной плавки без проведения ремонтных работ;
  • безопасную работу специалистов;
  • стабильность и непрерывность проведения плавильного процесса;
  • получение качественного материала при использовании экономного количества ресурсов;
  • применение для футеровки распространенных материалов по невысокой цене;
  • минимальное влияние на окружающее пространство.

Применение индукционных печей позволяет получить сплавы и металлы отменного качества с минимальным содержанием различных примесей и кислорода, что повышает их применение в сложных областях производства.

Корпус вакуумной камеры индукционной печи : двухслойный с водяным охлаждением из специальной стали SUS304. Вакуумная герметизация обеспечивается «О»-образным кольцом. Корпус оснащен установкой водяного охлаждения (предотвращает старение «О»-образного кольца). На корпусе вакуумной камеры вакуумной расположен соединительный трубопровод вакуумной системы. Внутри подина оборудована разливочной платформой или отверстием. Во время разливки печь поворачивается с помощью привода, расположенный снаружи камеры.

Индуктор вакуумной печи изготовлен из высококачественной бескислородной электротехнической меди TU1 квадратного сечения с водяным охлаждением. Использован индуктор немецкой фирмы Leybold.

Крышка вакуумной индукционной печи: двухслойная с водяным охлаждением, внутренняя стенка выполнена из специальной стали SUS304. Крышка печи оснащена установкой водяного охлаждения, смотровым окном, блокировочной установкой.

Печь оснащена мощным среднечастотным тиристорным преобразователем мощность, спроектированный на базе тиристоров нового поколения, высокоскоростные датчики тока и напряжения, обеспечивающие высокую надежность, помехоустойчивость и многофункциональность.

Система водоохлаждения вакуумной печи делится на три части: система охлаждения среднечастотного преобразователя, система охлаждения корпуса печи, индуктора и системы вакуумной.

Вакуумная система как правило состоит из механического насоса с электромагнитным пневматическим клапаном перепада давления (предотвращает утечку масла вакуумного насоса), насоса Рутса, подпитывающего насоса, пневматических клапанов, клапана подачи воздуха, клапана сброса воздуха, вакуумного трубопровода, гофрированных труб.

Уровень вакуума измеряется при помощи цифрового комбинированного вакуумметра. Используются передовые гелиевые датчики разгерметизации для измерения коэффициента повышения давления, что гарантирует достоверность и точность технических показателей.

Для соединения насосов и вакуумного трубопровода использовано быстрое соединение металлическими гофрированными трубами (снижает вибрацию). Уровень вакуума измеряется цифровым вакуумметром.

Компания MAGMATEX использует передовые гелиевые датчики разгерметизации для измерения коэффициента повышения давления, что гарантирует достоверность и точность технических показателей.


При плавке металлов в вакууме выделяется значительной количество газов, которые должны удаляться с помощью вакуумных насосов. Первоначальный нагрев металла до 300-400° С сопровождается активной! десорбцией газов, а также испарением и разложением загрязнений на поверхности металла. При дальнейшем нагреве до 700-1000° С (для стали) практически полностью выделяется водород и частично кислород. После окончательного расплавления выделяются в большом количестве кислород, азот, окись углерода. Процесс состоит из стадий нагрева, расплавлен и рафинирования, во время которого удаляются остатки газа.

Методом вакуумной плавки особенно важно получать заготовки из железных сплавов, никеля, меди, молибдена для электровакуумной промышленности; пластичные сорта железа с малым содержанием углерода (армко, трансформаторные и др.), также железо с высокой магнитной проницаемостью; специальные стали и сплавы с пониженным содержанием водорода и азота; нихром;противокоррозионные сплавы на никелевой основе; высокоэлектродную медь и ее сплавы; платину и платиновые металлы; тугоплавкие редкие металлы. Чтобы получить качественный металл, необходимо загрузить ero в герметичную печь и при постепенном нагреве и расплавлении откачивать выделяющиеся из него газы. Время пребывания жидкого перегретого металла в вакууме должно быть достаточным, чтобы произошли полностью все химические реакции и дегазация. Дегазированный металл должен выливаться в изложницу в вакууме. При литье в вакууме металл можно выливать медленно и тонкой струей, не боясь его окисления. Благодаря этому образование усадочных раковин в металле минимально. Не следует также забывать о подборе материала для тигля, так как и из него в процессе работы выделяются пары и газы, присутствие которых в системе может привести к нежелательным результатам.


В индукционной электрической печи материал нагревается током, возбуждаемым внутри заготовки. Заготовка помещена в индукторе (соленоиде), питаемом током промышленной или повышенной частоты (рис. 160). При расчете индукционных вакуумных плавильных пери нужно учитывать специфику процесса: тепло выделяется непосредственно в самом металле, который, в свою очередь, нагревает тигель и футеровку течи. Преимущество индукционного метода нагрева заключается в возможности нагрева металла с большой скоростью, а также в наличии вихревых ков в расплавленном металле. Этот способ дает очень равномерный нагрев металла.

Металл может нагреваться непосредственно при протекании по катушке переменного тока (рис. 161, а) или косвенно теплом излучения и теплопродностью от вспомогательного концентрически расположенного металлического цилиндра, подвергаемого индукционному нагреву (рис. 161, б). В последнем случае тепловой обработке может быть подвергнут и не электропроводный материал; кроме того, здесь проще нагрев образца не цилиндрической формы.

Крупные промышленные индукционные печи для плавления металлов имеют неподвижную жестко закрепленную вакуумную камеру, в которой размещена индукционная катушка с тиглем. Крышка камеры вместе с индуктором и тиглем может отодвигаться. Одна из печей подобного типа показана на рис. 162. Крышка камеры с индукционной катушкой и тиглем трехтонной индукционной печи фирмы Херауэс (ФРГ) показана на рис. 163. Положение тигля и катушки может изменяться на разных стадиях процесса (рис. 164).

Предельное давление в подобных печах составляет 5 1O -4 мм рт. ст., скорость откачки воздуха до 20 ООО л/с при давлении 10 -3 мм рт. ст. Габаритные размеры камеры: диаметр от 2800 до 4500 мм, длина от 2200 до 3000 мм; размеры индуктора: внутренний диаметр от 570 до 900 мм, высота - от 700 до 1200 мм; средний объем тигля - от 80 до 350 л.

Пример применения индукционной печи - получение сплава бронзы I с дисульфидом молибдена. Это антифрикционное вещество можно применять в условиях высокого вакуума и низких температур. Плавильная печь в этом | случае снабжена вакуумным прессом.


Металл здесь нагревается проходящим через него электрическим током. Печи сопротивления обычно применяют для тугоплавких металлов. Электрооборудование этих печей дешевле, чем индукционных. Греющий элемент должен иметь возможно большее удельное сопротивление. Греющими элементами могут служить уголь, графит, крип-тол (зернистый уголь), карборунд, тугоплавкие металлы. В таких печах нагревают и плавят любые вещества; необходимо только, чтобы нагреваемые вещества или продукты их взаимодействия не выделяли паров, разрушающих нагреватели.

Здесь можно спекать металлокерамические сплавы, плавить малолетучие металлы и т. п. На рис. 165 показана вакуумная печь сопротивления для плавки циркония с графитовым нагревателем. Вакуумные печи сопротивления для работы при температурах до 1200° С и давлении 10 -3 - 10 -4 мм рт. ст. с футеровкой из шамота-легковеса применяют также для термической обработки магнитных сплавов, коррозионностойких и жаропрочных сталей, титана, циркония, сплавов на основе титана и циркония, для спекания композиций на основе железа, никеля, меди, для пайки твердыми припоями и т. п.

Дуговые печи позволяют в небольшом объеме выделить одновременно большее количество тепла и быстрее, чем в печах других типов, достичь высокой температуры. Плавку в дуговых в электропечах применяют главным образом в производстве металлов, имеющих большую химическую активность при высоких температурах (молибден, тантал, ти-1ан, цирконий и др.). Особенно хорошие результаты получены с так называемой зависимой дугой, когда между электродом и самим нагреваемым металлом создается дуга. Графитовые электроды при плавке применять нежелательно, так как это может вызвать дополнительную примесь углерода в металле. Обычно используют электроды из вольфрама. Во многих случаях электрод делают из того же металла, который плавят в дуговой печи, причем он постепенно оплавляется (расходуемый электрод).

Практика показала, что плавка в печах с расходуемым электродом дает возможность получать металлы и сплавы высокого качества. Характерной особенностью печи является равномерное выделение газов на протяжении всего цикла.


Схема вакуумной дуговой печи с расходуемым электродом дана на рис. 166. Схема печи фирмы Дегусса (ФРГ) для выплавки специальных сталей с загрузкой 400 кг приведена на рис. 167. На Ижорском заводе пущена мощная печь вакуумно-дугового переплава. Печь выдает слиток сверхчистой стали массой 37 т.

На рис. 168 показана дуговая вакуумная печь фирмы Ульвак (Япония) с расходуемым электродом производительностью 25 т за одну загрузку. Производительность таких печей от 2 кг до 30 т. Печь пригодна для рафинирования и плавления активных металлов и металлов с высокой точкой плавления.


Плавка в высоковакуумной печи с электроннолучевым нагревом дает возможность получать металл высокой чистоты. Рафинирование металла происходит как чисто зонной очисткой (благодаря различию в растворимости примесей в твердом и жидком) металле), так и дегазацией металла в вакууме и испарением примесей с более высокой упругостью пара, чем у очищаемого металла. Для расплавления возможен нагрев с помощью электронной пушки, которая служит катодом и бомбардирует исходный металл (анод). Плавящийся металл стекает в водоохлаждаемую изложницу, где поддерживается в расплавленном состоянии с помощью электронной бомбардировки от другой пушки. При производстве таким методом пластичного ниобия получали слиток длиной 1,2 м и диаметром около 80 мм. При этом скорость плавки ниобия достигала В5- 7 кг/ч, а при повторном переплаве-36 кг/ч.



Плавка с помощью электронной бомбардировки в вакууме имеет преимущества перед вакуумной дуговой плавкой: форма применяемого для плавки образца не имеет значения; расход электроэнергии значительно ниже, так как для поддержания дуги при дуговой плавке необходимы большие токи и низкое напряжение, а для питания электронных пушек - высокое напряжение и низкие токи;применение более высокого вакуума, чем в печах других типов; качество получаемого металла выше, чем в вакуумной дуговой печи.

Преимущества электронного нагрева дают основания считать этот метод перспективным для производства таких металлов, как тантал, молибен, ниобий, бериллий, а также специальных и коррозионностойких сталей.

Рис. 167. Схема высоковакуумной дуговой печи для расплавления специальных сталей с загрузкой 400 кг (фирма Дегусса, ФРГ)

Схема печи показана на рис. 169. Футеровка в такой печи отсутствует, а выделение газов равномерно в течение всего цикла. Для нормальной работы таких печей необходимо поддержание высокого вакуума, поэтому к исходному материалу предъявляют повышенные требования в отношении содержания газов. Исходный материал, предназначенный для плавки в печах электронным нагревом, предварительно плавится в вакуумных индукционных или дуговых печах.

Вфирма Ульвак (Япония) выпускает печи серии FME для плавки электронным лучом тугоплавких металлов: Та, Nb, Ti, Zr, W. Для работы в сверхвысоком вакууме фирма предлагает печи на базе сверхвысоковакуумного откачного агрегата EBD-400.


Такие печи, присоединяемые к сверхвысоко-вакуумному агрегату своим нижним фланцем, показаны на рис. 170. На рис. 170, а показана печь для зонной плавки и рафинирования тугоплавких (W, Та, Mo, Nb) и активных металлов (Ti, Zr), а также полупроводниковых материалов (Ge, Si) при давлениях порядка 10 -9 мм рт. ст. При таких давлениях плавление происходит в абсолютно чистой и сухой среде. В печах можно также обрабатывать сталь, никель и другие металлы. Предельное давление в печи без загрузки после прогревания всей системы в течение 6 ч до 250° С составляет 1 *10 -9 мм рт. ст.

Рис. 171. Схема сверхвысоковакуумной печи с нагревом электронным лучом и с отклоняющей системой (фирма Ульвак, Япония)

Равновесное давление при зонном плавлении тантала и скорости прохода 0,1 мм/мин около 10 -8 мм рт. ст. Размеры образца: диаметр 4-7 мм, длина 200 мм. Эффективная длина при плавлении составляет 120 мм. Максимальная мощность электронной пушки 5 кВт. Расходуемая мощность при непрерывной работе 3 кВт. Мощность, расходуемая системой откачки, 10 кВт; расход воды 20 л/с. Скорость прохода электронной пушки может меняться в широких пределах с целью создания оптимальных условий для плавления и рафинирования. Образец может вращаться со скоростью от 1 до 8 об/мин. Здесь применяется электростатическая электронная пушка с кольцевым катодом.

На рис. 170, б показана печь EBD-400, снабженная электронной пушкой мощностью 6 кВт проникающего типа и водоохлаждаемой медной изложницей. Слитки получают двух видов: либо полукруглой формы (в изложнице 8x5 мм), либо У-образной формы изложница длиной 200 мм, шириной 23 мм и глубиной 15 мм). Давление печи при плавлении тантала и предельное давление те же, что и в предыдущем случае. Электронная пушка, снабженная отклоняющей системой, имеет максимальную мощность 6 кВт при ускоряющем напряжении от 0 до 20 кВ. Диапазон изгибания луча 200 мм в направлении X, 23 мм в направлении Y. Автоматическая развертка возможна для направления X и Y. Мощность системы откачки 10 кВт; расход воды 25 л/мин. Устройство печи EBD-400 EBM показано на рис. 171.

Вакуумные плавильные печи используются для получения металлов и сплавов высочайшего качества. Низкое давление в пространстве рабочей камеры позволяет резко снизить содержание газов в слитке без применения защитных сред.

Область применения индукционных печей


Вакуумные печи используются во многих технологических процессах:

плавка металлов и сплавов: тугоплавких, жаропрочных, высоколегированных;

спекание изделий из легкоокисляющихся металлов;

дегазация жидких металлов и других материалов;

термообработка металлов (закалка, отпуск, отжиг);

нанесение покрытий посредством осаждения испаряемых металлов и пр.

Основные типы вакуумных печей

Наиболее распространенными видами вакуумных печей являются:

дуговые: применяются для выплавки нержавеющих, электротехнических и других высококачественных сталей, тугоплавких металлов (титан, цирконий, тантал и пр.);

плазменные: предназначены для плавления высокореакционных и тугоплавких металлов;

индукционные: их можно отнести к оборудованию широкого применения. Наибольшее распространение получили вакуумные плавильные индукционные печи с наклоняемым тиглем. Их используют на крупных металлургических заводах для плавки качественных и высоколегированных сталей и их разливки в изложницы.

Стандартные типоразмеры плавильных печей

По габаритам вакуумные плавильные печи делятся на лабораторные (емкостью до 50-100 кг) и промышленные. Однако подобная классификация весьма условна: существует множество моделей промышленного значения с рабочим объемом всего в 10-20 кг.

Принцип действия индукционных промышленных печей

Несмотря на конструктивные особенности разных видов вакуумных плавильных печей, работают они по единому принципу: в огнеупорном тигле, помещенном в вакуумную камеру, при помощи нагревательного элемента металл расплавляется (или нагревается жидкий), рафинируется и легируется. Процесс завершается отливкой фасонных изделий или простых слитков.

По принципу действия вакуумные плавильные печи делятся на три группы:

полунепрерывного действия;

непрерывного действия;

периодического действия.

Плавильные промышленные печи полунепрерывного действия не требуют систематической разгерметизации. В них меняют изложницы при помощи камер, отделяемых от основной шиберами. Такие же шлюзовые устройства используются и для загрузки печи. Устройства полунепрерывного действия применяются в промышленности. Благодаря их конструктивным особенностям:

огнеупорная футеровка тиглей находится в благоприятных условиях, так как она не подвергается перепадам температур;

отпадает необходимость откачки воздуха перед началом новой плавки, что весьма положительно сказывается на производительности печи;

в камере до минимума сведено образование окислов металлов, а, следовательно, и загрязнение последующей плавки уменьшается.

В плавильных промышленных печах периодического действия шлюзы не предусмотрены. Чтобы вынуть изложницу или загрузить шихту, приходится каждый раз разгерметизировать корпус и открывать вакуумную камеру. По такому принципу работают лабораторные печи.

Главными преимуществами вакуумных печей являются:

экономическая выгода: вместо дорогостоящих инертных газов используется низкое давление в камере;

высокая степень очистки металла;

возможность осуществлять строгий контроль химсостава и температуры расплава на любой стадии технологического процесса;

защита нагревательных элементов от окисления, что позволяет повышать рабочую температуру.

Стоимость вакуумных плавильных индукционных печей и других моделей достаточно высокая, но затраты быстро окупаются в процессе их эксплуатации.