Правильные многогранники: элементы, симметрия и площадь. Видеоурок «Элементы симметрии правильных многогранников

  • 24.09.2019

Элементы симметрии правильных многогранников Геометрия. 10 класс.

Тетраэдр - (от греческого tetra – четыре и hedra – грань) - правильный многогранник, составленный из 4 равносторонних треугольников. Из определения правильного многогранника следует, что все ребра тетраэдра имеют равную длину, а грани - равную площадь.

Элементы симметрии тетраэдра

Тетраэдр имеет три оси симметрии, которые проходят через середины скрещивающихся рёбер.

Тетраэдр имеет 6 плоскостей симметрии, каждая из которых проходит через ребро тетраэдра перпендикулярно скрещивающемуся с ним ребру.

Октаэдр - (от греческого okto – восемь и hedra – грань) - правильный многогранник, составленный из 8 равносторонних треугольников. Октаэдр имеет 6 вершин и 12 ребер. Каждая вершина октаэдра является вершиной 4 треугольников, таким образом, сумма плоских углов при вершине октаэдра составляет 240° .

Элементы симметрии октаэдра

Три из 9 осей симметрии октаэдра проходят через противоположные вершины, шесть - через середины ребер. Центр симметрии октаэдра - точка пересечения его осей симметрии.

Три из 9 плоскостей симметрии тетраэдра проходят через каждые 4 вершины октаэдра, лежащие в одной плоскости.

Шесть плоскостей симметрии проходят через две вершины, не принадлежащие одной грани, и середины противоположных ребер.

Икосаэдр – (от греческого ico - шесть и hedra - грань) правильный выпуклый многогранник, составленный из 20 правильных треугольников. Каждая из 12 вершин икосаэдра является вершиной 5 равносторонних треугольников, поэтому сумма углов при вершине равна

Элементы симметрии икосаэдра

Правильный икосаэдр имеет 15 осей симметрии, каждая из которых проходит через середины противоположных параллельных ребер. Точка пересечения всех осей симметрии икосаэдра является его центром симметрии.

Плоскостей симметрии также 15.Плоскости симметрии проходят через четыре вершины, лежащие в одной плоскости, и середины противолежащих параллельных ребер.

Куб или гексаэдр (от греческого hex - шесть и hedra - грань) составлен из 6 квадратов. Каждая из 8 вершин куба является вершиной 3 квадратов, поэтому сумма плоских углов при каждой вершине равна 2700. У куба 12 ребер, имеющих равную длину.

Элементы симметрии куба

Ось симметрии куба может проходить либо через середины параллельных ребер, не принадлежащих одной грани, либо через точку пересечения диагоналей противоположных граней. Центром симметрии куба является точка пересечения его диагоналей.

Через центр симметрии проходят 9 осей симметрии.

Плоскостей симметрии у куба также 9 и проходят они либо через противоположные ребра

(таких плоскостей-6), либо через середины противоположных ребер (таких - 3).

Додекаэдр (от греческого dodeka – двенадцать и hedra– грань) это правильный многогранник, составленный из 12 равносторонних пятиугольников. Додекаэдр имеет 20 вершин и 30 ребер. Вершина додекаэдра является вершиной трех пятиугольников, таким образом, сумма плоских углов при каждой вершине равна 3240.

Элементы симметрии додекаэдра

Додекаэдр имеет центр симметрии и 15 осей симметрии. Каждая из осей проходит через середины противолежащих параллельных ребер.

Додекаэдр имеет 15 плоскостей симметрии. Любая из плоскостей симметрии проходит в каждой грани через вершину и середину противоположного ребра.

Развертки правильных многогранников

Развертка- это способ развернуть многогранник на плоскость после проведения разрезов по нескольким ребрам. Развертка представляет собой плоский многоугольник, составленный из меньших многоугольников - граней исходного многогранника. Один и тот же многогранник может иметь несколько разных разверток.

§ 1 Правильный многогранник

На этом уроке рассмотрим правильные многогранники, а именно симметрию таких фигур. Поговорим о том, кто в своем творчестве обращался к гармонии и красоте правильных многогранников.

Напомним определение правильного многогранника и вспомним, какие именно правильные многогранники существуют и изучаются в геометрии.

Выпуклый многогранник называется правильным, если все его грани - равные правильные многоугольники и в каждой его вершине сходится одно и то же число ребер. Правильных многогранников всего пять: тетраэдр, гексаэдр, октаэдр, додекаэдр, икосаэдр.

Напомним так же, о каких видах симметрии мы говорим в пространстве - это симметрия центральная (относительно точки), осевая симметрия (относительно прямой) и симметрия относительно плоскости.

§ 2 Элементы симметрии правильного тетраэдра

Рассмотрим элементы симметрии правильного тетраэдра. Он не имеет центра симметрии. Зато прямая, проходящая через середины двух противоположных ребер, является его осью симметрии.

Плоскость, проходящая через ребро АВ перпендикулярно к противолежащему ребру СD правильного тетраэдра АВСD, является плоскостью симметрии. Посмотрите, правильный тетраэдр имеет три оси симметрии и шесть плоскостей симметрии.

§ 3 Элементы симметрии куба

Куб имеет один центр симметрии - точку пересечения его диагоналей. Прямые а и b, проходящие соответственно через центры противоположных граней и середины двух противоположных ребер, не принадлежащих одной грани, являются его осями симметрии. Куб имеет девять осей симметрии. Обратите внимание, все оси симметрии проходят через центр симметрии. Плоскостью симметрии куба является плоскость, проходящая через любые две оси симметрии. Куб имеет девять плоскостей симметрии. Оставшиеся три правильных многогранника так же имеют центр симметрии и несколько осей и плоскостей симметрии. Попробуйте посчитать их число.

§ 4 Многогранники в искусстве

Изучение многогранников увлекало многих творческих людей. Знаменитый художник Альбрехт Дюрер в известной гравюре «Меланхолия» на переднем плане изобразил додекаэдр. Перед вами изображение картины художника Сальвадора Дали "Тайная Вечеря". Это огромное полотно, в котором художник решил посоревноваться с Леонардо да Винчи. Обратите внимание, что изображено на переднем плане картины. Христос со своими учениками изображён на фоне огромного прозрачного додекаэдра. Голландский художник Мориц Корнилис Эшер, родившийся в 1989 году в Леувардене, создал уникальные и очаровательные работы, в которых использован или показан широкий круг математических идей. Правильные геометрические тела - многогранники - имели особое очарование для Эшера. В его многих работах многогранники являются главной фигурой и в еще большем количестве работ они встречаются в качестве вспомогательных элементов. На гравюре "Четыре тела" Эшер изобразил пересечение основных правильных многогранников, расположенных на одной оси симметрии, кроме этого многогранники выглядят полупрозрачными, и сквозь любой из них можно увидеть остальные. В начале XX века во Франции зародилось модернистское направление в изобразительном искусстве, прежде всего в живописи - кубизм, характеризующийся использованием подчеркнуто геометризованных условных форм, стремлением «раздробить» реальные объекты на стереометрические примитивы. Наиболее известными кубистическими произведениями стали картины Пикассо «Авиньонские девицы», «Гитара».

§ 5 Многогранники в природе

Природа создает не менее восхищающие творения. Поваренная соль состоит из кристаллов в форме куба. Скелет одноклеточного организма феодарии представляет собой икосаэдр. Минерал сильвин также имеет кристаллическую решетку в форме куба. Кристаллы пирита имеют форму додекаэдра. Молекулы воды имеют форму тетраэдра.

Минерал сильвин также имеет кристаллическую решетку в форме куба. Кристаллы пирита имеют форму додекаэдра. Молекулы воды имеют форму тетраэдра. Минерал куприт образует кристаллы в форме октаэдров. Вирусы, построенные только из нуклеиновой кислоты и белка, имеют вид икосаэдра.Всем этим мы можем любоваться и восхищаться повсюду.

И в который раз хочется вернуться к словам Иоганна Кеплера немецкого математика, астронома, механика, оптика и астролога, первооткрывателя законов движения планет, который сказал «Математика есть прообраз красоты мира.

Список использованной литературы:

  1. Геометрия. 10 – 11 классы: учебник для общеобразоват. учреждений: базовый и профил. уровни / [ Л. С. Атанасян, В. Ф. Бутузов, С.Б. Кадомцев и др.]. – 22-е изд. – М. : Просвещение, 2013. – 255 с. : ил. – (МГУ - в школе)
  2. Учебно – методическое пособие в помощь школьному учителю. Составитель Яровенко В.А. Поурочные разработки по геометрии к учебному комплекту Л. С. Атанасяна и др. (М. : Просвещение) 10 класс
  3. Рабинович Е. М. Задачи и упражнения на готовых чертежах. 10 – 11 классы. Геометрия. – М. : Илекса, 2006 . – 80 с.
  4. М. Я Выгодский Справочник по элементарной математике М.: АСТ Астрель, 2006. - 509с.
  5. Аванта+. Энциклопедия для детей. Том 11. Математика 2-е изд., перераб.- М.: Мир энциклопедий Аванта+: Астрель 2007. - 621 с. Ред. коллегия: М. Аксёнова, В. Володин, М.Самсонов.

Использованные изображения:

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

Элементы симметрии правильных многогранников Геометрия. 10 класс.

Тетраэдр - (от греческого tetra – четыре и hedra – грань) - правильный многогранник, составленный из 4 равносторонних треугольников. Из определения правильного многогранника следует, что все ребра тетраэдра имеют равную длину, а грани - равную площадь. Элементы симметрии тетраэдра Тетраэдр имеет три оси симметрии, которые проходят через середины скрещивающихся рёбер. Тетраэдр имеет 6 плоскостей симметрии, каждая из которых проходит через ребро тетраэдра перпендикулярно скрещивающемуся с ним ребру.

Октаэдр - (от греческого okto – восемь и hedra – грань) - правильный многогранник, составленный из 8 равносторонних треугольников. Октаэдр имеет 6 вершин и 12 ребер. Каждая вершина октаэдра является вершиной 4 треугольников, таким образом, сумма плоских углов при вершине октаэдра составляет 240 ° . Элементы симметрии октаэдра Три из 9 осей симметрии октаэдра проходят через противоположные вершины, шесть - через середины ребер. Центр симметрии октаэдра - точка пересечения его осей симметрии. Три из 9 плоскостей симметрии тетраэдра проходят через каждые 4 вершины октаэдра, лежащие в одной плоскости. Шесть плоскостей симметрии проходят через две вершины, не принадлежащие одной грани, и середины противоположных ребер.

Икосаэдр – (от греческого ico - шесть и hedra - грань) правильный выпуклый многогранник, составленный из 20 правильных треугольников. Каждая из 12 вершин икосаэдра является вершиной 5 равносторонних треугольников, поэтому сумма углов при вершине равна 300 °. Элементы симметрии и косаэдра Правильный икосаэдр имеет 15 осей симметрии, каждая из которых проходит через середины противоположных параллельных ребер. Точка пересечения всех осей симметрии икосаэдра является его центром симметрии. Плоскостей симметрии также 15.Плоскости симметрии проходят через четыре вершины, лежащие в одной плоскости, и середины противолежащих параллельных ребер.

Куб или гексаэдр (от греческого hex - шесть и hedra - грань) составлен из 6 квадратов. Каждая из 8 вершин куба является вершиной 3 квадратов, поэтому сумма плоских углов при каждой вершине равна 270 0 . У куба 12 ребер, имеющих равную длину. Элементы симметрии куба Ось симметрии куба может проходить либо через середины параллельных ребер, не принадлежащих одной грани, либо через точку пересечения диагоналей противоположных граней. Центром симметрии куба является точка пересечения его диагоналей. Через центр симметрии проходят 9 осей симметрии. Плоскостей симметрии у куба также 9 и проходят они либо через противоположные ребра (таких плоскостей-6), либо через середины противоположных ребер (таких - 3).

Додекаэдр (от греческого dodeka – двенадцать и hedra – грань) это правильный многогранник, составленный из 12 равносторонних пятиугольников. Додекаэдр имеет 20 вершин и 30 ребер. Вершина додекаэдра является вершиной трех пятиугольников, таким образом, сумма плоских углов при каждой вершине равна 324 0. Элементы симметрии додекаэдра Додекаэдр имеет центр симметрии и 15 осей симметрии. Каждая из осей проходит через середины противолежащих параллельных ребер. Додекаэдр имеет 15 плоскостей симметрии. Любая из плоскостей симметрии проходит в каждой грани через вершину и середину противоположного ребра.

Развертки правильных многогранников Развертка - это способ развернуть многогранник на плоскость после проведения разрезов по нескольким ребрам. Развертка представляет собой плоский многоугольник, составленный из меньших многоугольников - граней исходного многогранника. Один и тот же многогранник может иметь несколько разных разверток.

Элементами симметрии называются вспомогательные геометрические образы (точка, линия, плоскость и их сочетания), с помощью которых мысленно можно совместить в пространстве равные грани кристалла (многогранника). При этом под симметрией кристалла понимается закономерное повторение в пространстве равных его граней, а также вершин и ребер.

Различают три основных элемента симметрии кристаллов – центр симметрии, плоскость симметрии и оси симметрии.

Центром симметрии называется воображаемая точка внутри кристалла, равноудаленная от его элементов ограничения (т. е. противоположных вершин, середин ребер и граней). Центр симметрии является точкой пересечения диагоналей правильной фигуры (куба, параллелепипеда) и обозначается буквой С , а по международной системе Германа-Могена – I.

Центр симметрии в кристалле может быть только один. Однако имеются кристаллы, в которых центр симметрии вообще отсутствует. При решении вопроса о том, имеется ли центр симметрии в Вашем кристалле, необходимо руководствоваться следующим правилом:

«При наличии центра симметрии в кристалле каждой его грани соответствует равная и противоположная ей грань».

На практических занятиях с лабораторными моделями наличие или отсутствие центра симметрии в кристалле устанавливается следующим образом. Кладем кристалл какой-либо его гранью на плоскость стола. Проверяем, присутствует ли сверху равная и параллельная ей грань. Повторяем ту же операцию для каждой грани кристалла. Если каждой грани кристалла отвечает сверху равная и параллельная ей грань, то центр симметрии в кристалле присутствует. Если хотя бы для одной грани кристалла не найдется сверху равной и параллельной ей грани, то центра симметрии в кристалле нет.

Плоскостью симметрии (обозначается буквой Р, по международной символике – m) называется воображаемая плоскость, проходящая через геометрический центр кристалла и разделяющая его на две зеркально равные половины. Кристаллы, имеющие плоскость симметрии, обладают двумя свойствами. Во-первых, две его половины, разделенные плоскостью симметрии, равны по объему; во-вторых, они равны, как отражения в зеркале.

Для проверки зеркального равенства половин кристалла необходимо из каждой его вершины провести воображаемые перпендикуляр к плоскости и продолжить его на то же расстояние от плоскости. Если каждой вершине соответствует с противоположной стороны кристалла зеркально отраженная ей вершина, то плоскость симметрии в кристалле присутствует. При определении плоскостей симметрии на лабораторных моделях кристалл ставится в фиксированное положение и затем мысленно рассекается на равные половины. Проверяется зеркальное равенство полученных половин. Считаем, сколько раз мы можем мысленно рассечь кристалл на две зеркально равные части. Помните, что кристалл при этом должен быть неподвижен!

Число плоскостей симметрии в кристаллах варьирует от 0 до 9. Например, в прямоугольном параллелепипеде находим три плоскости симметрии, т. е. 3Р.

Осью симметрии называется воображаемая линия, проходящая через геометрический центр кристалла, при повороте вокруг которой кристалл несколько раз повторяет свой внешний вид в пространстве, т. е. самосовмещается. Это означает, что после поворота на некоторый угол на место одних граней кристалла становятся другие, равные им грани.

Основной характеристикой оси симметрии является наименьший угол поворота, при котором кристалл первый раз «повторяется» в пространстве. Этот угол называется элементарным углом поворота оси и обозначается α, например:

Элементарный угол поворота любой оси обязательно содержится целое число раз в 360°, т. е. (целое число), где n – порядок оси.

Таким образом, порядком оси называется целое число, показывающее, сколько раз элементарный угол поворота данной оси содержится в 360°. Иначе, порядок оси – это число «повторений» кристалла в пространстве при полном его повороте вокруг данной оси.

Оси симметрии обозначаются буквой L, порядок оси - маленькой цифрой справа внизу, например, L 2 .

В кристаллах возможны следующие оси симметрии и соответствующие им элементарные углы поворота.

Таблица 1

Соотношение осей симметрии и элементарных углов поворота

В любом кристалле существует бесконечное количество осей симметрии первого порядка, поэтому на практике они не определяются.

Осей симметрии 5-го и любого порядка выше 6-го в кристаллах вообще не существует. Эта особенность кристаллов формулируется как закон симметрии кристаллов. Закон симметрии кристаллов объясняется специфичностью их внутреннего строения, а именно – наличием пространственной решетки, которая не допускает возможности существования осей 5-го, 7-го, 8-го и так далее порядков.

В кристалле может быть несколько осей одного и того же порядка. Например, в прямоугольном параллелепипеде присутствуют три оси 2-го порядка, т. е. 3L 2.

В кубе - 3 оси 4-го порядка, 4 оси 3-го порядка и 6 осей 2-го порядка. Оси симметрии наивысшего порядка в кристалле называют главными.

Нахождение осей симметрии на моделях во время лабораторных занятий осуществляется в следующем порядке. Кристалл берется кончиками пальцев одной руки за его противоположные точки (вершины, середины ребер или граней). Воображаемая ось ставится перед собой вертикально; запоминается какой-либо характерный внешний вид кристалла. Затем кристалл вращается другой рукой вокруг воображаемой оси до тех пор, пока его первоначальный внешний вид не «повторится» в пространстве. Считаем, сколько раз кристалл «повторяется» в пространстве при полном повороте вокруг данной оси. Это и будет ее порядок. Аналогичным образом проверяются все другие теоретически возможные направления прохождения оси симметрии в кристалле. Данные оси симметрии называются простыми.

Кроме них существуют сложные оси симметрии, называемые зеркально-поворотными и инверсионными. Зеркально-поворотная ось симметрии представляет собой мысленное сочетание простой оси и перпендикулярной ей плоскости симметрии. Зеркально-поворотные оси могут быть тех же порядков, что простые, но на практике используется только ось 4-го порядка, которая обозначается L 4 2 и всегда ровна L 2, но не наоборот.

Инверсионная ось симметрии представляет собой мысленное сочетание простой оси симметрии и центра симметрии. На практике и в теории используются только инверсионные оси 4-го и 6-го порядка. Они обозначаются Li 4 и Li 6 .

Сочетание всех элементов симметрии кристалла, записанное условными обозначениями, называется его формулой симметрии . В формуле симметрии сначала перечисляются оси симметрии, затем плоскости симметрии и последним показывается наличие центра симметрии. Между обозначениями не ставится точек или запятых. Например, формула симметрии прямоугольного параллелепипеда: 3L 3 3PC; куба – 3L 4 4L 3 6L 2 9PC.

Виды симметрии кристаллов

Видами симметрии называются возможные в кристаллах сочетания элементов симметрии. Каждому виду симметрии соответствует определенная формула симметрии.

Всего для кристаллов теоретически доказано наличие 32 видов симметрии. Таким образом, всего существует 32 формулы симметрии кристаллов.

Все виды симметрии объединяются в 7 ступеней симметрии с учетом наличия характерных элементов симметрии.

1. Примитивная – объединяются виды симметрии, представленные только одиночными осями симметрии разного порядка: L 3 , L 4 , L 6 .

2. Центральная – помимо одиночных осей симметрии присутствует центр симметрии; кроме того, наряду с наличием четных осей симметрии появляется еще плоскость симметрии: L 3 С, L 4 PC, L 6 PC.

3. Планальная (план – плоскость, греч.) – присутствуют одиночная ось и плоскости симметрии: L 2 2P, L 4 4P.

4. Аксиальная (аксис – ось, греч.) – присутствуют только оси симметрии: 3L 2 , L 3 3L 2 , L 6 6L 2 .

5. Планаксиальная – присутствуют оси, плоскости и центр симметрии: 3L 2 3PC, L 4 4L 2 5PC.

6. Инверсионно-примитивная – наличие единственной инверсионной оси симметрии: L i 4 , L i 6 .

7. Инверсионно-планальная – наличие, помимо инверсионной оси, простых осей и плоскостей симметрии: L i 4 4L 2 2P, L i 6 3L 2 3P.

В каждую ступень симметрии объединяется разное количество видов симметрии: от 2 до 7.

Сингонии

Сингонией называется группа видов симметрии, обладающих одноименной главной осью симметрии и одинаковым общим уровнем симметрии (син – сходный, гониа – угол, дословно: сингония – сходноугольность, греч.). Переход от одной сингонии к другой сопровождается повышением степени симметрии кристаллов.

Всего выделяют 7 сингоний. В порядке последовательного повышения степени симметрии кристаллов они располагаются следующим образом.

1. Триклинная сингония (клин – угол, наклон, греч.) получила название с учетом той особенности кристаллов, что между всеми гранями углы всегда косые. Кроме С других элементов симметрии нет.

2. Моноклинная (монос – один, греч.) – в одном направлении между гранями кристаллов угол всегда косой. В кристаллах могут присутствовать L 2 , P и С. Ни один из элементов симметрии не повторяется хотя бы дважды.

3. Ромбическая – получила название по характерному поперечному сечению кристаллов (вспомните углы ромбические 1-го рода).

4. Тригональная – названа по характерному поперечному сечению (треугольник) и многогранным углам (тригональный, дитригональный). Обязательно присутствует одна L 3 .

5. Тетрагональная – характерны поперечное сечение в форме квадрата и многогранные углы – тетрагональный и дитетрагональный. Обязательно присутствует L 4 или L i4 .

6. Гексагональная – сечение в форме правильного шестиугольника, многогранные углы – гексагональный и дигексагональный. обязательно присутствие одной L 6 или L i 6 .

7. Кубическая – типична кубическая форма кристаллов. Характерно сочетание элементов симметрии 4L 3 .

Сингонии объединяются в 3 категории : низшую, среднюю и высшую.


Похожая информация.


Основной интерес к правильным многогранникам вызывает большое число симметрий, которыми они обладают. Под симметрией (или преобразованием симметрии) многогранника мы понимаем такое его движение как твердого тела в пространстве (например, поворот вокруг некоторой прямой, отражение относительно некоторой плоскости и т.д.), которое оставляет неизменными множества вершин, ребер и граней многогранника. Иначе говоря, под действием преобразования симметрии вершина, ребро или грань либо сохраняет свое исходное положение, либо переводится в исходное положение другой вершины, другого ребра или другой грани. Существует одна симметрия, которая свойственна всем многогранникам. Речь идет о тождественном преобразовании, оставляющем любую точку в исходном положении. С менее тривиальным примером симметрии мы встречаемся в случае прямой правильной р-угольной призмы.

Примеры размерности симметрии плоских фигур дают правильные многоугольники. Примеры симметрии пространственных фигур дают правильные призмы и пирамиды: они совмещаются сами с собой, например, поворотами вокруг оси, перпендикулярной плоскости основания и проходящей через его центр.

Мы будем понимать симметрию в общем смысле, как она определена в начале и как ее понимают, в частности, когда говорят о симметрии кристаллов. При этом наложения фигуры на себя называются преобразованиями симметрии.

Теорема. Рассмотрим данный правильный многогранник Р. Пусть А -- его вершина, а -- ребро с концом А, а -- грань со стороной а. Для любых других аналогичных его элементов А", а", а" существует наложение многогранника Р на себя, переводящее А" в А, а" в а, а" в а.

Доказательство

Переносом многогранника переведем вершину А" в А. Поворотом многогранника вокруг А переведем перенесенное ребро а" в а. Поворотом многогранника вокруг ребра а приведем (перенесенную и повернутую) грань а" в совпадение с гранью а. Так как грани равны, то грань а" полностью совместится с а.

Так как двугранные углы равны, то для граней р и р", смежных с а и а", есть только две возможности: 1) р" совпадает с р; 2) р" не совпадает с р, но будет симметрична р относительно плоскости грани а. В таком случае отражением в этой плоскости переведем Р" в р.

Итак, наложением всего многогранника Р мы совместили вершину А" с А, ребро а" -- с а, грани а", р", смежные по ребру а", -- с гранями а, р, смежными по ребру а.

Убедимся, что при этом многогранник оказывается совмещенным сам с собой. Две грани многогранного угла при вершине А совпали (а" с а, р" с р). Перейдем к граням у и у", соседним с р. Двугранные углы, которые они образуют с р, равны и расположены с одной стороны -- с той же, с какой лежит грань а. Поэтому грань у" совпадает с у. Так убедимся, что многогранные углы при вершине А совпали. Переходя к другой вершине, соединенной с А ребром, аналогично убедимся, что и при этой вершине многогранные углы совпадают. И так пройдя по всему многограннику, убедимся, что он совпал сам с собой, что и требовалось доказать. ?

Свойство правильных многогранников, установленное доказанной теоремой, означает, что они обладают, так сказать, максимальной мыслимой симметрией. Наложение, совмещение многогранника самого с собою, неизбежно совмещает какую-то вершину А" с А, ребро а" -- с а, грань а"-- с а, и примыкающую грань р" -- с р. Наложение этим вполне определено, оно только одно. Поэтому максимальное число возможных наложений будет тогда, когда каждую совокупность А, а, а, р можно перевести в каждую. А это так у правильных многогранников Очевидно, верно и обратное. Если многогранник обладает такой максимальной симметрией, то он правильный (так как ребро а совмещается с а", угол на грани а" при вершине А совмещается с таким же углом, и двугранный угол между а" и р 4 " совмещается с углом между а и р.-- так что все ребра и углы равны). Число наложений, совмещающих правильный многогранник сам с собою, равно 2 те, где т -- число ребер, сходящихся в одной вершине, и е -- число вершин; те наложений первого рода и те -- наложений второго рода. Они и образуют группу симметрии правильного многогранника. Группы симметрии у куба и октаэдра совпадают ввиду их двойственности. Так же совпадают группы симметрии у додекаэдра и икосаэдра. Группа тетраэдра является подгруппой группы куба, как видно из возможности вложить тетраэдр в куб (рис. 1.5, а). Наиболее интересные элементы симметрии -- это зеркальные оси: 4-го порядка у тетраэдра, 6-го порядка -- у куба, 10-го порядка -- у додекаэдра (рис. 1.5,б). Убедитесь, что это так, определив, как расположены эти оси. Оси симметрии и плоскости симметрии куба изображены на рис. 1.5 в, г.

1 .5 Подобие многогранников

Два многогранника называются подобными, если существует преобразование подобия, переводящее один многогранник в другой.

Подобные многогранники имеют соответственно равные многогранные углы и соответственно подобные грани. Соответственные элементы подобных многогранников называются сходственными. У подобных многогранников двугранные углы равны и одинаково расположены, а сходственные ребра пропорциональны.

Кроме того, справедливы следующие теоремы:

Теорема 1. Если в пирамиде провести секущую плоскость параллельно основанию, то она отсечет от нее пирамиду, подобную данной.

Теорема 2. Площади поверхностей подобных многогранников относятся как квадраты, а их объемы - как кубы сходственных линейных элементов многогранников.