Принцип золотого сечения модель. Что такое золотое сечение (пропорция)

  • 16.10.2019

Любому человеку, которому хотя бы косвенно приходилось сталкиваться с геометрией пространственных объектов в интерьерном дизайне и архитектуре, наверняка хорошо известен принцип золотого сечения. Еще недавно, несколько десятков лет назад, популярность золотого сечения была настолько высокой, что многочисленные сторонники мистических теорий и устройства мира его называют универсальным гармоническим правилом.

Сущность универсальной пропорции

Удивительно другое. Причиной предвзятого, почти мистического отношения к столь простой числовой зависимости послужило несколько необычных свойств:

  • Большое количество объектов живого мира, от вируса до человека, имеют основные пропорции тела или конечностей, очень близкие к значению золотого сечения;
  • Зависимость 0,63 или 1,62 характерна только для биологических существ и некоторых разновидностей кристаллов, неживые объекты, от минералов до элементов ландшафта, обладают геометрией золотого сечения крайне редко;
  • Золотые пропорции в строении тела оказались наиболее оптимальными для выживания реальных биологических объектов.

Сегодня золотое сечение находят в строении тела животных, панцирей и раковин моллюсков, пропорций листьев, веток, стволов и корневых систем у достаточно большого числа кустарников и трав.

Многими последователями теории универсальности золотого сечения неоднократно предпринимались попытки доказать тот факт, что его пропорции являются наиболее оптимальными для биологических организмов в условиях их существования.

Обычно в качестве примера приводится устройство раковины Astreae Heliotropium, одного из морских моллюсков. Панцирь представляет собой свернутую спиралью кальцитовую оболочку с геометрией, практически совпадающей с пропорциями золотого сечения.

Более понятным и очевидным примером является обычное куриное яйцо.

Соотношение основных параметров, а именно, большого и малого фокуса, или расстояний от равноудаленных точек поверхности до центра тяжести, будет также соответствовать золотому сечению. При этом форма скорлупы птичьего яйца является наиболее оптимальной для выживания птицы, как биологического вида. При этом прочность скорлупы играет далеко не главную роль.

К сведению! Золотое сечение, называемое еще универсальной пропорцией геометрии, было получено в результате огромного количества практических измерений и сравнений размеров реальных растений, птиц, животных.

Происхождение универсальной пропорции

О золотой пропорции сечения знали древнегреческие математики Евклид и Пифагор. В одном из памятников древней архитектуры — пирамиде Хеопса соотношение сторон и основания, отдельные элементы и настенные барельефы выполнены в соответствии с универсальной пропорцией.

Методика золотого сечения широко использовалась в средние века художниками и архитекторами, при этом суть универсальной пропорции считалась одной из тайн вселенной и тщательно скрывалась от простого обывателя. Композиция многих картин, скульптур и зданий выстраивалась строго в соответствии с пропорциями золотого сечения.

Впервые суть универсальной пропорции документально была сформулирована в 1509 г монахом-францисканцем Лукой Пачоли, обладавшим блестящими математическими способностями. Но настоящее признание состоялось после проведения немецким ученым Цейзингом всестороннего изучения пропорций и геометрии человеческого тела, древних скульптур, произведений искусства, животных и растений.

У большинства живых объектов некоторые размеры тела подчиняются одним и тем же пропорциям. В 1855 г ученым был сделан вывод о том, что пропорции золотого сечения являются своеобразным стандартом гармонии тела и формы. Речь идет, прежде всего, о живых существах, для мертвой природы золотое сечение встречается значительно реже.

Как получили золотое сечение

Пропорцию золотого сечения проще всего представить, как отношение двух частей одного объекта разной длины, разделенных точкой.

Проще говоря, сколько длин маленького отрезка поместится внутри большого, или отношение самой большей из частей ко всей длине линейного объекта. В первом случае соотношение золотого сечения составляет 0,63, во втором варианте соотношение сторон равняется 1,618034.

На практике золотое сечение представляет собой всего лишь пропорцию, соотношение отрезков определенной длины, сторон прямоугольника или других геометрических форм, родственных или сопряженных размерных характеристик реальных объектов.

Первоначально золотые пропорции были выведены эмпирическим путем с помощью геометрических построений. Существует несколько способов построения или выведения гармонической пропорции:


К сведению! В отличие от классического золотого соотношения, архитектурная версия подразумевает соотношение сторон отрезка в пропорции 44:56.

Если стандартный вариант золотого сечения для живых существ, живописи, графики, скульптур и античных построек рассчитывался, как 37:63, то золотое сечение в архитектуре с конца XVII века все чаще стало использоваться 44:56. Большинство специалистов считают изменение в пользу более «квадратных» пропорций распространением высотного строительства.

Главный секрет золотого сечения

Если природные проявления универсального сечения в пропорциях тел животных и человека, стеблевой основы растений еще можно объяснить эволюцией и приспосабливаемостью к влиянию внешней среды, то открытие золотого сечения в строительстве домов XII-XIX века стало определенной неожиданностью. Мало того, знаменитый древнегреческий Парфенон был построен с соблюдением универсальной пропорции, многие дома и замки состоятельных вельмож и зажиточных людей в средние века строились сознательно с параметрами, очень близкими к золотому сечению.

Золотое сечение в архитектуре

Многие из построек, сохранившихся до сегодняшних дней, свидетельствуют, что архитекторы средневековья знали о существовании золотого сечения, и, конечно, при строительстве дома руководствовались своими примитивными расчетами и зависимостями, с помощью которых пытались добиться максимальной прочности. Особенно проявлялось желание строить максимально красивые и гармоничные дома в постройках резиденций царствующих особ, церквей, ратуш и зданий, имеющих особое социальное значение в обществе.

Например, знаменитый собор Парижской богоматери в своих пропорциях имеет немало участков и размерных цепей, соответствующих золотому сечению.

Еще до публикации своих исследований в 1855 году профессором Цейзингом, в конце XVIII века были построены знаменитые архитектурные комплексы Голицынской больницы и здания сената в Санкт-Петербурге, дома Пашкова и Петровского дворца в Москве с использованием пропорций золотого сечения.

Разумеется, дома с точным соблюдением правила золотого сечения строили и ранее. Стоит упомянуть памятник древней архитектуры церкви Покрова на Нерли, изображенный на схеме.

Всех их объединяет не только гармоничное сочетание форм и высокое качество строительства, но и, в первую очередь, наличие золотого сечения в пропорциях здания. Удивительная красота постройки становится еще более загадочной, если принять во внимание возраст, здание церкви Покрова датируется XIII веком, но современный архитектурный облик постройка получила на рубеже XVII века в результате реставрации и перестройки.

Особенность золотого сечения для человека

Старинная архитектура зданий и домов средневековья остается притягательной и интересной для современного человека по многим причинам:

  • Индивидуальный художественный стиль в оформлении фасадов позволяет избежать современного штампа и серости, каждое здание представляет собой произведение искусства;
  • Массовое использование для декорирования и украшения статуй, скульптур, лепнины, необычных сочетаний строительных решений разных эпох;
  • Пропорции и композиции здания притягивают взор к наиболее важным элементам постройки.

Важно! При проектировании дома и разработке внешнего вида средневековые архитекторы применяли правило золотого сечения, неосознанно используя особенности восприятия подсознания человека.

Современные психологи экспериментально доказали, что золотое сечение является проявлением неосознанного желания или реакции человека на гармоничное сочетание или пропорцию в размерах, формах и даже цветах. Был проведен эксперимент, в ходе которого группе людей, незнакомых между собой, не имеющих общих интересов, разных профессий и возрастных категорий, предложили ряд тестов, среди которых была задача согнуть лист бумаги в наиболее оптимальной пропорции сторон. По результатам тестирования было установлено, что в 85 случаях из 100 лист сгибался испытуемыми практически точно по золотому сечению.

Поэтому современная наука считает, что феномен универсальной пропорции является психологическим явлением, а не действием каких-либо метафизических сил.

Использование фактора универсального сечения в современном дизайне и архитектуре

Принципы применения золотой пропорции в последние несколько лет стали необыкновенно популярны в строительстве частных домов. На смену экологии и безопасности строительных материалов пришли гармоничность конструкции и правильное распределение энергии внутри дома.

Современная интерпретация правила всеобщей гармонии давно распространилась за пределы привычной геометрии и формы объекта. Сегодня правилу подчиняются не только размерные цепи длины портика и фронтона, отдельных элементов фасада и высоты здания, но и площадь комнат, оконных и дверных проемов, и даже цветовая гамма внутреннего интерьера помещения.

Проще всего построить гармоничный дом на модульной основе. В этом случае большинство отделений и комнат изготавливаются в виде самостоятельных блоков или модулей, спроектированных с соблюдением правила золотого сечения. Построить здание в виде набора гармоничных модулей значительно проще, чем строить одну коробку, в которой большая часть фасада и внутренних помещений должна быть в жестких рамках пропорций золотого сечения.

Немало строительных фирм, выполняющих проектирование частных домовладений, используют принципы и понятия золотого сечения для увеличения сметы и создания у клиентов впечатления глубокой проработки конструкции дома. Как правило, такой дом декларируется, как очень удобный и гармоничный в пользовании. Правильно подобранное соотношение площадей комнат гарантирует душевный комфорт и отменное здоровье хозяев.

Если дом был построен без учета оптимальных соотношений золотого сечения, можно выполнить перепланировку комнат так, чтобы пропорции помещения соответствовали соотношению стен в пропорции 1:1,61. Для этого может перемещаться мебель или устанавливаться дополнительные перегородки внутри комнат. Аналогичным образом меняются размеры оконных и дверных проемов так, чтобы ширина проема была меньше высоты дверного полотна в 1,61 раза. Таким же способом выполняется планирование мебели, бытовой техники, отделки стен и пола.

Сложнее выбрать цветовое оформление. В этом случае вместо привычного соотношения 63:37 последователями золотого правила принята упрощенная трактовка - 2/3. То есть основной цветовой фон должен занимать 60% пространства помещения, оттеняющему цвету отдают не более 30%, и остальное отводится под различные родственные тона, призванные усилить восприятие цветового решения.

Внутренние стены помещения делятся горизонтальным поясом или бордюром на высоте 70 см, установленная мебель должна соизмеряться с высотой потолков по соотношению золотого сечения. То же правило касается распределения длин, например, размер дивана не должен превышать 2/3 длины простенка, а общая площадь, занимаемая мебелью, относится к площади комнаты, как 1:1,61.

Золотую пропорцию сложно в массовом порядке применять на практике из-за всего лишь одного значения сечения, поэтому при проектировании гармоничных зданий нередко прибегают к ряду чисел Фибоначчи. Это позволяет расширить количество возможных вариантов пропорций и геометрических форм основных элементов дома. В этом случае ряд чисел Фибоначчи, связанных между собой четкой математической зависимостью, называют гармоническим или золотым.

В современной методике проектирования жилья на основе принципа золотого сечения, кроме ряда Фибоначчи, широко используется принцип, предложенный известным французским архитектором Ле Корбюзье. В этом случае в качестве отправной единицы измерения, по которой рассчитываются все параметры здания и внутреннего интерьера, выбирается рост будущего владельца или средняя высота человека. Такой подход позволяет спроектировать дом не только гармоничный, но и по-настоящему индивидуальный.

Заключение

На практике, по отзывам тех, кто решился на строительство дома по правилу золотого сечения, качественно построенное здание действительно оказывается достаточно удобным для проживания. Но стоимость строения из-за индивидуального проектирования и применения стройматериалов нестандартных размеров возрастает на 60-70%. И в этом подходе нет ничего нового, так как большинство зданий прошлого века строилось именно под индивидуальные особенности будущих хозяев.

1. Понятие гармонии Вот как пишет о гармонии Алексей Петрович Стахов , доктор технических наук (1972 г.), профессор (1974 г.), академик Академии инженерных наук Украины ( www . goldenmuseum . com ). "С давних пор человек стремится окружать себя красивыми вещами. Уже предметы обихода жителей древности, которые, казалось бы, преследовали чисто утилитарную цель - служить хранилищем воды, оружием на охоте и т.д., демонстрируют стремление человека к красоте. На определенном этапе своего развития человек начал задаваться вопросом: почему тот или иной предмет является красивым и что является основой прекрасного? Уже в Древней Греции изучение сущности красоты, прекрасного , сформировалось в самостоятельную ветвь науки - эстетику, которая у античных философов была неотделима от космологии. Тогда же родилось представление о том, что основой прекрасного является гармония. Красота и гармония стали важнейшими категориями познания, в определенной степени даже его целью, ибо в конечном итоге художник ищет истину в красоте, а ученый - красоту в истине. Красота скульптуры, красота храма, красота картины, симфонии, поэмы... Что между ними общего? Разве можно сравнивать красоту храма с красотой ноктюрна? Оказывается можно, если будут найдены единые критерии прекрасного, если будут открыты общие формулы красоты, объединяющие понятие прекрасного самых различных объектов - от цветка ромашки до красоты обнаженного человеческого тела?.....". Известный итальянский теоретик архитектуры Леон-Баттиста Альберти, написавший много книг о зодчестве, говорил о гармонии следующее:
"Есть нечто большее, слагающееся из сочетания и связи трех вещей (числа, ограничения и размещения), нечто, чем чудесно озаряется весь лик красоты. Это мы называем гармонией, которая, без сомнения, источник всякой прелести и красоты. Ведь назначение и цель гармонии - упорядочить части, вообще говоря, различные по природе, неким совершенным соотношением так, чтобы они одна другой соответствовали, создавая красоту... Она охватывает всю жизнь человеческую, пронизывает всю природу вещей. Ибо все, что производит природа, все это соизмеряется законом гармонии. И нет у природы большей заботы, чем та, чтобы произведенное ею было совершенным. Этого никак не достичь без гармонии, ибо без нее распадается высшее согласие частей".
В Большой Советской Энциклопедии дается следующее определение понятия "гармония":
"Гармония - соразмерность частей и целого, слияние различных компонентов объекта в единое органическое целое. В гармонии получают внешнее выявление внутренняя упорядоченность и мера бытия".
"Формул красоты" уже известно немало. Уже давно в своих творениях люди предпочитают правильные геометрические формы - квадрат, круг, равнобедренный треугольник, пирамиду и т.д. В пропорциях сооружений отдаются предпочтение целочисленным соотношениям. Из многих пропорций, которыми издавна пользовался человек при создании гармонических произведений, существует одна, единственная и неповторимая, обладающая уникальными свойствами. Эту пропорцию называли по разному - "золотой", "божественной", "золотым сечением", "золотым числом", "золотой серединой".

рис. 1 "Золотая пропорция" - это понятие математическое и ее изучение - это прежде всего задача науки. Но она же является критерием гармонии и красоты, а это уже категория искусства и эстетики. И наш Музей, который посвящен изучению этого уникального феномена, является, несомненно, научным музеем, посвященным изучению гармонии и красоты с математической точки зрения". На сайте А. П. Стахова ( www . goldenmuseum . com ) приводится много интересной и поучительной информации о замечательных свойствах золотого сечения. И это не удивительно. С понятием «золотое сечение» связывают гармонию Природы. При этом с гармонией, как правило, связывают принципы симметрии в живой и неживой Природе. Поэтому всеобщностью проявления принципа золотого сечения сегодня уже никого не удивишь. И каждое новое открытие в сфере выявления еще одной золотой пропорции уже никого не поражает, разве что самого автора такого открытия. Всеобщность этого принципа ни у кого не вызывает сомнения. В различных справочниках приводятся сотни формул, связывающих ряд Фибоначчи с золотым сечением, в том числе и ряд формул, отражающих взаимодействия в мире элементарных частиц . Среди этих формул хочется отметить одну- бином Ньютона для золотой пропорции где - число перестановок. А бином Ньютона, как известно, отражает степенную функцию двойственного отношения. Данная формула привязывает бином золотого отношения к Единице. Без этого принципа, по сути дела, нельзя рассмотреть ни одной фундаментальной проблемы. В милогии эта пропорция обоснована как принцип самодостаточности. И все же несмотря на всеобщность золотая пропорция на практике используется далеко не всегда, и не везде. 2 . МОНАДА И ЗОЛОТОЕ СЕЧЕНИЕ Принципы симметрии лежат в основе теории относительности, квантовой механики, физики твердого тела, атомной и ядерной физики, физики элементарных частиц. Выше было показано, что симметрия - это одна из форм проявления двойственности. Поэтому нет ничего удивительного в том, что эти принципы наиболее ярко выражаются в свойствах инвариантности законов природы.В показано, что симметрия и асимметрия не просто взаимосвязаны друг с другом, а они являются разными формами проявления закономерности двойственности. Закономерность двойственности является одним из основных механизмов эволюции живой и неживой материи. Действительно, способность к размножению у живых организмов можно естественно объяснить только тем, что в процессе своего развития организм полностью достраивает свою оболочку и попытка дальнейшего усложнения структуры приводит, в силу закономерности об ограниченности и замкнутости, к трансформации из организма с внутренней двойственностью в организм с внешней двойственностью, т. е. удвоению, которое осуществляется путем деления оригинала. Затем процесс повторяется. Закономерность двойственности является ответственной за создание дублирующих органов в живом организме. Это дублирование не является следствием эволюции живых организмов. В основе золотого сечения лежитпростая пропорция, которая хорошо видна на рисунке золотой спирали: Правила золотого сечения были известны еще в Вавилонии и древнем Египте. Пропорции пирамиды Хеопса, предметов из гробницы Тутанхамона, других произведений древнего искусства красноречиво об этом свидетельствуют, а сам термин “золотое сечение” принадлежит Леонардо да Винчи. С тех пор многие шедевры искусства, архитектуры и музыки выполняются при неукоснительном соблюдении золотой пропорции, несомненно отражающей строение наших сенсорных оболочек – глаз и ушей, головного мозга – анализатора геометрических, цветовых, световых, звуковых и других образов. Золотое сечение обладает еще одной тайной. Оно скрывает в себе свойство самонормирования . Академик Толкачев В.К. в своей книге "Роскошь системного мышления" так пишет об этом важном свойстве золотого сечения: «Когда-то Клавдий Птолемей разделил равномерно рост человека на 21 отрезок и выделил две основные части: большую (мажор), состоящую из 13-и отрезков, и меньшую (минор) - из 8-и. При этом оказалось, что отношение длины всей фигуры человека к длине ее большей части равно отношению большей части к меньшей.... Проиллюстрировать золотое отношение можно следующим образом. Если единичный отрезок разделить на две неравные части (мажор и минор) так, что длина всего отрезка (т.е. мажор + минор = 1) относится к мажору точно так же, как мажор относится к минору: (мажор + минор) / мажор = мажор / минор = Ф, то такая задача имеет решение в виде корней уравнения х 2 - х - 1 =0, численное значение которых: х 1 = - 0,618033989..., х 2 = 1,618033989..., Первый корень обозначается буквой " Ф ", а второй " - Ф ", но мы будем пользоваться иными обозначениями: Ф =1,618033989..., а Ф -1 = 0,618033989... Это - единственное число, которое обладает свойством быть ровно на единицу больше своего обратного отношения". Отметим, что другое уравнение х 2 - y - 1 = xy превращается в тождество при следующих значениях х 1 = + 0,618033989..., y 1 =- 1,618033989..., x 2 = -1,618033989..., y 2 = 0,618033989..., Может быть в совокупности эти корни и порождают животворящий крест - крест золотого сечения? Уравнение золотого сечения Ф 2 -Ф=1 где Ф 1 = -Ф -1 = - 0,618033989..., и Ф 2 = Ф 1 =1,618033989..., удовлетворяют свойству самонормирования , позволяющее строить более сложные "конструкции" по " образу и подобию ". Подставляя корни в уравнение х ( х-1)=1, мы получим Ф 1 (Ф 1 -1)= 1,618..*1,618..-1,618..=2,618..-1,618..=1 Ф -2 -(-Ф -1)=0,382...+0,6181=1. Таким образом, данное уравнение отражает не только принцип самонормирования , вытекающего из Единого закона эволюции двойственного отношения (монады), но и связь золотого сечения с биномом Ньютона (с монадой). Нетрудно показать, что будут справедливы следующие тождества Ф -2 =0,382...; Ф -1 =0,618...; Ф 1 =1,618...; Ф 2 =2,618...; Откуда непосредственно можно увидеть, что корни уравнения Ф 2 -Ф=1 обладают еще и другим и замечательными свойствами Ф 1 Ф -1 =Ф 0 =1 и Ф -1 (Ф 1 -1)= 1-Ф -1 ; Ф 1 (Ф -1 -1)=1-Ф 1 =1; Оно характеризует инвариантность одной математической монады в другую, путем умножения её на обратную величину, т.е. можно сказать, что корни уравнения золотого сечения сами формируют золотую, самонормированную монаду <Ф -1 ,Ф 1 > . Поэтому данное уравнение по праву можно назвать уравнением золотого сечения. Дополнительные свойства этого уравнения может узнать каждый, используя бином Ньютона и производящие функции (Преемственность ). Нетрудно понять, что процесс все более сложных "золотых монад" будет осуществляться "по образу и подобию" , т.е. этот процесс будет периодически повторяющимся, а все результаты оказываются как бы замкнутыми в рамки золотого сечения. Но, пожалуй, самые замечательные свойства золотого сечения связаны, в первую очередь, с уравнением золотого сечения, приведенным выше. Это уравнение является двойственным х 2 + х - 1 =0. Корни этого уравнения численно равны: х 1 = + 0,618033989..., х 2 = -1,618033989..., Это значит, что уравнения золотого сечения формируют крест золотого сечения с перекладинами
рис. 2
Вот он, поистине золотой крест, лежащий в основе мироздания! На правом рисунке непосредственно видно, что значения выражения в полюсах вертикальной перекладины равны 1. Из креста на левом рисунке видно также, что при каждом переходе с одной перекладины на вторую осуществляются самонормировки . Самонормировка происходит как при сложении, так и при умножении. Разница получается только в знаке. И это не случайно . При движении по перекладинам мы получаем еще четыре значения · при сложении : 0 и 0 , · при умножении : -0,382 .., и -2,618 . Нетрудно показать, что будут справедливы следующие тождества Ф -2 =0,382...; Ф -1 =0,618...; Ф 1 =1,618...; Ф 2 =2,618...; Используя ряд этих значений, и совершая обход по кресту мы получим еще один золотосеченный крест. Нетрудно показать, как из этих крестов, сформировать двойной крест, порождающий закон Куба.
рис. 3
Ниже мы покажем, что шесть полученных значений полностью вписываются в рамки сложного отношения - уникальной закономерности, известной из проективной геометрии. А сейчас мы приведем еще один рисунок, который непосредственно говорит о связи золотого сечения и Куба Закона. рис. 4 Сравните этот рисунок, нарисованный еще Леонардо да Винчи, с предыдущим. Увидели? Поэтому гимн золотому сечению можно продолжать до бесконечности. Так итальянский математик Лука Пачолли в своем труде "Божественная пропорция" приводит 13 свойств золотого сечения, снабжая каждое из них эпитетами - исключительное, несказанное, замечательнейшее, сверхъестественное, и т.д. Трудно сказать, связаны ли эти свойства с числом 13 или нет. Но вот хроматическая гамма связана и с числом 13, и с числом 8. Так, пропорцию 13/8 можно представить как 8/8+5/8. С этими пропорциями связываются и многие духовные знания (Путь к себе ). 3. РЯДЫ ЗОЛОТОГО СЕЧЕНИЯ Из вышеприведенных свойств золотого сечения следует вывод, что ряд ...; Ф -2 =0,382...; Ф -1 =0,618...; Ф 0 ; Ф 1 =1,618...; Ф 2 =2,618...; ...; может быть продолжен как вправо, так и влево. Более того, умножение это ряда на Ф + n или Ф - n порождает новый ряд, сдвинутый соответственно вправо или влево от исходного. Коэффициенты Ф + n или Ф - n можно считать коэффициентами подобия золотосеченных рядов. Золотосеченные ряды могут формировать натуральный ряд целых чисел.
Посмотрите, эти числа имеют удивительные свойства. Они формируют не только Великие Пределы двойственных"з олотых монад". Они формируют Великие Пределы триад (числа 5, 8,..). Они формируют и крест (число 9). Но существуют и другие, более фундаментальные золотосеченные ряды. В первую очередь следует привести формулу "золотого" бинома Ньютона. Бином Ньютона уже изначально свидетельствует о существовании монады (двойственного отношения) и его свойства лежат в основе биномиальных рядов (арифметический треугольник и др.). Теперь можно сказать и о том, что все биномиальные ряды могут быть выражены через золотую пропорцию. Золотая монада бинома Ньютона отражает еще одно важнейшее свойство мироздания. Она является нормированной (единичной). 4. О СВЯЗИ ЗОЛОТОГО СЕЧЕНИЯ С РЯДОМ ФИБОНАЧЧИ Природа как бы решает задачу сразу с двух сторон и складывает полученные результаты. Как только получает в сумме 1, то осуществляет переход в следующее измерение, где начинает строить все сначала. Но тогда она и должна строить это золотое сечение по определенному правилу. Природа не пользуется золотым сечением сразу. Она его получает путем последовательных итераций. Она для порождения золотогосечения пользуется другим рядом, - рядом Фибоначчи.

Рис.5

Рис. 6.Спираль золотого сечения и спираль Фибоначчи

Замечательным свойством этого ряда является то, что по мере увеличения чисел ряда отношение двух соседних членов этого ряда асимптотически приближается к точной пропорции Золотого сечения (1:1,618) основе красоты и гармонии в окружающей нас природе, в том числе и в человеческих отношениях . Отметим, что сам Фибоначчи открыл свой знаменитый ряд, размышляя над задачей о количестве кроликов, которые в течении одного года должны родиться от одной пары. У него получилось, что в каждом последующем месяце после второго число пар кроликов в точности следует цифровому ряду, которое ныне носит его имя. Поэтому не случайно, что и сам человек устроен по ряду Фибоначчи. Каждый орган устроен в соответствии с внутренней, или внешней двойственностью. Следует сказать, что спираль Фибоначчи может быть двойной. Существуют многочисленные примеры этих двойных спиралей, встречающихся повсюду. Так спирали подсолнухов всегда соотносятсяс рядом Фибоначчи. Даже в обычной сосновой шишке можно увидеть эту двойную спираль Фибоначчи. Первая спираль идет в одну сторону, вторая - в другую. Если посчитатьчисло чешуек в спирали, вращающейся в одном направлении, и число чешуек в другой спирали, можно увидеть, что это всегдадва последовательных числа ряда Фибоначчи. Может быть восемь в одном направлении и 13 в другом, или 13 в одном и 21 в другом . В чем разница между спиралями золотого сечения и спиралью Фибоначчи?Спираль золотого сечения идеальна. Она соответствуетПервоисточнику гармонии. Эта спираль не имеет ни начала, ни конца. Она бесконечна. Спираль Фибоначчи имеет начало, от которого она начинает “раскрутку”. Это очень важное свойство. Оно позволяет Природе после очередного замкнутого цикла осуществлять строительство новой спирали с“нуля”. Эти факты еще раз подтверждают, что закон о двойственности дает не только качественные, но и количественные результаты. Они заставляют задуматься о том, что окружающий нас Макромир и Микромир эволюцирует по одним и тем же законам- законам иерархии, и что эти законы едины для живой и для неживой материи. Закон двойственности является виновником того, что Иерархия, имея в своем багаже только один этот алгоритм формирования инвариантных оболочек, позволяет строить производящие функции этих оболочек, строить Единый Периодический ЗаконЭволюции Материи . Пусть мы имеемследующую производящую функцию При n=1 мы будем иметь производящуюфункцию вида и т.д.Теперь попробуем определять очередной член производящей функции по рекуррентной зависимости, полагая, чтоэтот член функции будет получаться путем суммирования ее двух последних членов. Например,при n=1, значение третьего члена ряда будет равно 2. В итоге мы получимряд (1-1х+2х2). Тогда,умножаяпроизводящую функцию на оператор (1-х) и используя рекуррентную зависимость для вычисления очередного члена ряда, мы и получимискомую производящую функцию. Обозначая через значение n-го члена ряда, а через предыдущее значение этого ряда и полагая n=1,2,3,….процесс последовательного формирования членов ряда можноизобразить следующимобразом (табл. 1).


Таблица 1.

Из таблицы видно, что после получения очередного результирующего члена ряда, этот член подставляется в исходный многочлен и производится сложение с предыдущим, затем новый результирующий член подставляется в исходный ряд и т. д. В результате мыполучаемряд Фибоначчи. Из таблицы непосредственно видно, что ряд Фибоначчи обладает свойством инвариантности относительно оператора (1-х) -онформируется какряд, получаемый в результате умножения ряда Фибоначчи на оператор (1-х), т.е.производящая функция ряда Фибоначчи при умножении на оператор (1-х) порождает саму себя. И это замечательное свойство также является следствием проявления закономерности о двойственности. Действительно в , , было показано, что многократное применение оператора вида(1+х) оставляет структурумногочлена неизменной, а ряд Фибоначчи обладает дополнительным,ещеболее замечательными свойствами: каждый член этого ряда является суммой двух его последних членов.Поэтому Природе не надо помнить сам ряд Фибоначчи. Надо только помнить последние два члена ряда и оператор видаP*(x )=(1-x), ответственного за данный алгоритмудвоения, чтобы получать без ошибки ряд Фибоначчи. Но почемув Природеименно этот ряд играет решающую роль?На этот вопрос может дать исчерпывающий ответ концепция тройственности, определяющая условия ее самосохранения. При нарушении «баланса интересов»триады одним из ее «партнеров», «мнения» двух других «партнеров» должны быть скорректированы. Особенно наглядно концепция тройственности проявляется в физике, где из кварков построили «почти» все элементарные частицы.Если вспомнить, что отношения дробных зарядов кварковых частиц составляют ряд , а это и есть первые члены ряда Фибоначчи, которые необходимы дляформирования других элементарных частиц. Возможно, что спираль Фибоначчи может играть решающую роль и в формировании закономерности ограниченности и замкнутости иерархических пространств. Действительно, представим, что на каком-то этапе эволюции спираль Фибоначчи достигла совершенства (она стала неотличима отспирали золотого сечения) и по этой причине частица должнатрансформироваться в следующую «категорию». Чудесные свойства ряда Фибоначчи проявляются и в самих числах, являющихся членами этого ряда.Расположим члены ряда Фибоначчи по вертикали., а затемвправо, в порядке убывания, запишем натуральные числа
1 2 32 543 8765 13 12 11 1 1 098 21 20 19 18 17 16 1514 13 34 33 32 31 30 29 28 27 26 25 24 23 22 21 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 ....
Каждая строчка начинается и завершается числом Фибоначчи, т. е. в каждой строчке всего два таких числа. Подчеркнутые числа - 4, 7, 6, 11, 10, 18, 16, 29, 26, 47, 42обладают особыми свойствами (второй уровень иерархии ряда Фибоначчи):
(5-4)/(4-3)= 1/1 (8-7)/(7-5) = 1/2 и(8-6)/(6-5)= 2/1 (13-11)/(11-8) = 2/3 и (13-10)/(10-8) = 3/2 (21-18)/(18-13) = 3/5 и (21-16)/(1б-13) = 5/3 (34-29)/(29-21) = 5/8 и (34-26)/(26-21) = 8/5 (55-47)/(47-34) = 8/13 и (55-42)/(42-34) = 13/8
Мы получили дробный ряд Фибоначчи, который, возможно,«исповедуют» коллективные спиныэлементарных частиц и атомов химических элементов. Следующий уровень иерархии образуется в результате дробления интервалов между числами Фибоначчи и выделенными числами. Например, на третью ступень иерархии встанут числа 52 и 50 из интервала 55-47. Процесс стр уктурирования ряда натуральных чисел может быть продолжен, т.к.свойствапериодичности и многоуровневости строения материи отражается даже в свойствах самого ряда Фибоначчи. Но у ряда Фибоначчи имеется еще одна тайна, вскрывающая сущность периодичности изменения свойств дв ойственного отношения (монады). Выше был определен диапазон изменения свойств дв ойственного отношения, характеризующего его норму самодостаточности U=<2/3, 1) Построим для данного диапазона ряд Фибоначчи L==<(-1/3), 0+(-1/3), (-1/3)+(-1/3), (-1/3)+(-2/3) >= <-1/3, -1/3, -2/3, -3/3>

Мы получим L -тетраэдр, характеризующий возрастающую спираль эволюции двойственного отношения. Продолжим этот процесс. Попытка выйти за пределы данного диапазона нормы самодостаточности приведет к его нормированию, т.е. первым элементом в D -тетраэдре будет характеризоваться нормой самодостаточности, равной 1,0 . Но, продолжая далее этот процесс, мы будем вынуждены постоянно производить перенормировку. Следовательно, эволюция не может продолжаться? Но, в самом вопросе имеется и ответ. После перенормировки эволюция должна начаться сначала, но в противоположную сторону, т.е. при формировании "параллельного" D-тетраэдра должен измениться знак числа и ряд Фибоначчи начинает обратное движение.

D==<(1/3), 0+(1/3), (1/3)+(1/3), (1/3)+(2/3) >= <1/3, 1/3, 2/3, 3/3>

Тогда общий ряд , характеризующий норму самодостаточности "звездного тетраэдра" будет характеризоваться соотношениями

U==const

Устойчивое состояние звездного тетраэдра будет зависеть от соответствующего сопряжения L- и D- тетраэдров. При U=1 будем иметь куб. При U=2/3 мы получим самодостаточный звездный тетраэдр, с самодостаточными L- и D- тетраэдрами. При меньших значениях устойчивое состояние звездного тетраэдра будет достигаться только совместными усилиями L- и D- тетраэдрами. Очевидно, что в этом случае минимальное значение нормы самодостаточности звездного тетраэдра будет равно U=1/3, т.е. два н е самодостаточных тетраэдра совместными усилиями образуют самодостаточный звездный тетраэдр U. В самом общем случае устойчивые состояния звездного тетраэдра U можно проиллюстрировать, например, следующей схемой.

Рис. 7

На последнем рисунке приведена фигура, напоминающая мальтийский крест, с восемью вершинами. т .е. эта фигура снова навевает ассоциации со звездным тетраэдром.

О чудесных свойствах ряда Фибоначчи, о его периодичности свидетельствует следующая информация ( Михайлов Владимир Дмитриевич,« Живая информационная Вселенная», 2000 г., Россия, 656008, г. Барнаул, ул. Партизанская дом. 242).

с.10. "Законы «золотой пропорции», «золотого сечения» связаны с цифровым рядом Фибоначчи, открытого в 1202 году, является направлением в теории кодирования информации. За многовековую историю познания чисел Фибоначчи, образуемый его членами отношения (числа) и их различные инварианты скрупулезно изучены и обобщены, но так полностью и не расшифрованы. Математическая последовательность ряда чисел Фибоначчи представляет из себя последовательность чисел, где каждый последующий член ряда, начиная с третьего, равен сумме двух предыдущих: 1,1,2,3,5,8,13,21,34,55,89,144,233… до бесконечности. …Цифровой код цивилизации можно определить с помощью различных методов в нумерологии. Например, с помощью приведения сложных чисел к однозначным (к примеру: 13 есть (1+3)=4, 21 есть (2+3)=5 и т.д.) Проводя подобную процедуру сложения со всеми сложными числами ряда Фибоначчи, получим следующий ряд из 24 цифр: 1 ,1 ,2 ,3 ,5 ,8 ,4 ,3 ,7 ,1 ,8 ,9 ,8 ,8 ,7 ,6 ,4 ,1 ,5 ,6 ,2 ,8 ,1 ,9 далее сколько не преобразовывай числа в цифры, через 24-ре цифры цикл будет последовательно повторяться бесконечное количество раз… …не является ли набор из 24 цифр своеобразным цифровым кодом развития цивилизации? С.17 Если Пифагорийскую Четверку в последовательности 24-х цифр Фибоначчи разделить между собой (как бы переломить) и наложить друг на друга, то возникает картина взаимоотношений 12-ти дуальностей противоположных цифр, где каждая пара цифр в сумме дает 9-ку (дуальность , рождающая троичность)....
1 1 8 =9 2 1 8 =9 3 2 7 =9 4 3 6 =9 5 5 4 =9 6 8 1 =9 7 4 5 =9 8 3 6 =9 9 7 2 =9 10 1 8 =9 11 8 1 =9 12 9 9 = 18=1+8=9 (моя редакция)

1 1 1 1 75025

2 1 1 1 75025 3 2 2 2 150050 4 3 3 3 225075 5 5 5 5 375125 6 8 8 8 600200 7 4 1+3 13 4 975325 8 3 2+1 21 3 1575525 9 7 3+4 34 7 2550850 10 1 5+5=10=1 55 1 4126375 11 8 8+9=17=1+7 89 8 6677225

12 9 1+4+4 144 9 10803600

13 8 2+3+3 233 8 17480825 14 8 3+7+7=17=1+7=8 377 8 28284425 15 7 6+1+0=7 610 7 45765250 16 6 9+8+7=24=2+4=6 987 6 74049675 17 4 1+5+9+7=22=2+2=4 1597 4 119814925 18 1 2+5+8+4=19+1+9=10=1 2584 1 193864600 19 5 4+1+8+1=14=1+4=5 4181 5 313679525 20 6 6+7+6+5=24=2+4=6 6765 6 507544125 21 2 1+0+9+4+6=20=2 10946 2 821223650 22 8 1+7+7+1+1=17=1+7=8 17711 8 1328767775 23 1 2+8+6+5+7=28=2+8=10=1 28657 1 2149991425

24 9 4+6+3+6+8=27+2+7=9 46368 9 3478759200"

Данная информация свидетельствует о том, что все "дороги ведут в Рим", т.е. множество периодически повторяющихся случайностей, совпадений. м истификаций и т.д., сливаясь в единый поток, с неизбежностью приводят к выводу о существовании периодической закономерности, отражаемой в ряде Фибоначчи. А теперь рассмотрим еще одно, быть может, самое замечательное свойства ряда Фибоначчи. На странице "Монадные формы " мы отмечали, что существует всего пять уникальных форм, имеющих первостепенное значение. Они называются Платановыми телами. Любое Платоново тело имеет некоторые особые характеристики. Во-первых , все грани такого тела равны по размеру. Во-вторых , ребра Платонова тела - одной длины. В-третьих , внутренние углы между его смежными гранями равны. И, в-четвертых, будучи вписанным в сферу, Платоново тело каждой своей вершиной касается поверхности этой сферы. Рис. 8 Есть только четыре формы помимо куба (D), имеющие все эти характеристики. Второе тело (В) - это тетраэдр (тетра означает «четыре»), имеющий четыре грани в виде равносторонних треугольников и четыре вершины. Еще одно тело (C) - это октаэдр (окта означает «восемь»), восемь граней которого - это равносторонние треугольники одинакового размера. Октаэдр содержит 6 вершин. Куб имеет 6 граней и восемь вершин. Два других Платоновых тела несколько сложнее. Одно (E) называется икосаэдр, что означает «имеющий 20 граней», представленных равносторонними треугольниками. Икосаэдр имеет 12 вершин. Другое (F) называется додекаэдр (додека - это «двенадцать»). Его гранями являются 12 правильных пятиугольников. Додекаэдр имеет двадцать вершин. Эти тела обладают замечательными свойствами быть вписанными все всего в две фигуры - сферу и куб. Подобная взаимосвязь с Платоновыми телами прослеживается во всех сферах. Так, например, системe орбит планет солнечной системы можно представить в виде вложенных друг в друга Платоновых тел, вписанных в соответствующие сферы, которые и определяют радиусы орбит соответствующих планет солнечной системы. Фаза А (рис. 8) характеризует начало эволюции монадной формы. А потому эта форма является как бы самой простой (сферой). Затем рождается тетраэдр, и т.д. Куб, расположен в этой гексаде напротив сферы и потому он обладает сходными свойствами. Тогда свойствами, сходными с тетраэдром должны обладать монадная форма, расположенная в гексаде напротив тетраэдра. Это икосаэдр. Формы додекаэдра должны быть «родственны» октаэдру. И, наконец, последняя форма снова становится сферой. Последняя становится первой! Кроме того, в гексаде должна наблюдаться преемственность эволюции двух соседних Платоновых тел. И, действительно, октаэдр и куб, икосаэдр и додекаэдр взаимны. Если у одного из этих многогранников соединить отрезками прямых центры граней, имеющих общее ребро, то получится другой многогранник. В этих свойствах кроется их эволюционное происхождение друг от друга. В Платоновой гексаде можно выделить две триады: «сфера-октаэдр-икосаэдр» и «тетраэдр-куб-додекаэдр», наделяющие соседние вершины собственных триад свойствами взаимности. Эти фигуры обладают еще одним замечательным качеством. Они связаны крепкими узами с рядом Фибоначчи -<1:1:2:3:5:8:13:21:...>, в котором каждый последующий член равен сумме двух предыдущих. Вычислим разности между членами ряда Фиббоначи и числом вершин в Платоновых телах :
· 2=2-А=2-2=0 (нулевой "заряд"), · 3=3-В=3-4=-1 (отрицательный "заряд"), · 4=5-С=5-6=-1 (отрицательный "заряд"), · 5=8-D=8-8=0 (нулевой "заряд"), · 6=13-Е=13-12=1 (положительный "заряд"), · 7=21-F=21-20=1 (положительный "заряд"), Рис. 9
На первый взгляд может показаться, что "монадные заряды" Платоновых тел отражают как бы несоответствие идеальных форм от ряда Фибоначи . Однако, полагая, что начиная с куба, Платоновы тела могут формировать ВЕЛИКИЕ ПРЕДЕЛЫ (Великий Предел), то становится ясным, что додекаэдр и икосаэдр, отражая взаимодополнительное соответствие между число граней и числом вершин, характеризуемых числами 12 и 20, фактически выражают собой соотношения 13 и 21 ряда Фибоначчи. Посмотрите, как происходит нормирование ряда Фибоначчи. 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89,... 12, 20, ..... 1, 1, 2, 3, 5, 8, 13 Первая строка отражает "нормальный" алгоритм формирования ряда Фибоначчи. Вторая строка начинается с икосаэдра, в котором 13 вершина оказалась центром структуры, отражая свойства ВЕЛИКОГО ПРЕДЕЛА. Аналогичный ВЕЛИКИЙ ПРЕДЕЛ имеется и у додекаэдра. Эти два кристалла порождают новое измерение - нормированную монаду "икосаэдр-додекаэдр", которая и начинает формировать новый виток ряда Фибоначчи (третья строка). Первые Платоновы тела как бы отражают фазу анализа, когда происходит разворачивание ВЕЛИКОГО ПРЕДЕЛА из монады (1,1). Вторая фаза -с интез новой монады и сворачивание ее в ВЕЛИКИЙ ПРЕДЕЛ. Так ряд Фибоначи порождает "золотую пропорцию", ответственную за рождение гармонии всего сущего, поэтому и Платоновы тела также будут характеризовать свойства всех материальных структур. Так, атомы всегда соотносятся с пятью Платоновыми телами. Даже если разбирать на части очень сложную молекулу, в ней можно найти более простые формы, и они всегда могут быть прослежены до одного из пяти Платоновых тел - независимо от того, какова ее структура. Не имеет значения, что это - металл, кристалл или что-то еще, - структура всегда восходит к одной из пяти первоначальных форм. Следовательно, мы приходим к выводу, что число используемых природой первозданных монадных форм является ограниченным и замкнутым. К такому же выводу пришел еще много веков назад Платон, который считал, что сложные частицы элементов имеют форму многогранников, при дроблении эти многогранники дают треугольники, которые и являются истинными элементами мира. Достигнув самой совершенной формы, природа берет эту форму в качестве элементарной и начинает строить следующие формы, используя последние в качестве «единичных» элементов. Поэтому все высшие формы неорганических, органических, биологических и полевых форм материи обязательно должны будут связаны с более простыми монадными кристаллами. Из этих форм должны строиться и самые сложные - высшие формы Высшего разума. И эти свойства монадных кристаллов должны проявляться на всех уровнях иерархии: в структуре элементарных частиц, в структуре Периодической системы элементарных частиц, в структуре атомов, в структуре Периодической системы химических элементов, и т.д. Так, в химических элементах, все подоболочки и оболочки могут быть представлены в форме монадных кристаллов. Естественно, что внутренняя структура атомов химических элементов должна отражаться в структуре кристаллов и клетках живых организмов. «Любая форма есть производное одного из пяти Платоновых тел. Без исключений. И не имеет значения, какова структура кристалла, она всегда основана на одном из Платоновых тел...» . Так в свойствах Платоновых тел отражается гармония золотого сечения и механизмы его порождения рядом Фибоначчи. И снова мы приходим к самому фундаментальному свойству ЕДИНОГО ЗАКОНА - ПЕРИОДИЧНОСТИ. Библейское "И ПОСЛЕДНИЙ СТАНОВИТСЯ ПЕРВЫМ" отражается во всех творениях мироздания. На следующем рисунке приводится схема хроматической гаммы, в которой 13-я нота находится за "границей осознанного мира", а любая соседняя пара может порождать новую хроматическую гамму (Законы Абсолюта ).
рис. 10 Данный рисунок отражает принципы, в соответствии с которыми формируется ЕДИНОЕ САМОСОГЛАСОВАННОЕ ПОЛЕ ГАРМОНИИ ВСЕЛЕННОЙ.

5. ЗОЛОТОЕ СЕЧЕНИЕ И ПРИНЦИПЫ САМООРГАНИЗАЦИИ

5.1. САМОДОСТАТОЧНОСТЬ

Принципы саморганизации (самодостаточность, саморегулирование, самовоспроизведение, саморазвитие и самонормирование ) очень тесно связаны с золотым сечением. Рассматривая принципы самоорганизации и принципы нового мышления (О новом мышлении , О глобалистике ) был обоснован вывод о том, что понятие самодостаточность определяет долю вклада собственных целевых функций в общую целевую функцию того или иного объекта окружающего мира. Если собственная доля вклада в общую целевую функцию объект будет не ниже 2/3, то такой объект будет иметь "контрольный пакет акций" целевой функции объекта и, следовательно, будет являться самодостаточным , не "марионеточным" объектом. Но 2/3=0,66..., а золотая пропорция равна 0,618... Очень близкое совпадение, или..? Вот именно ИЛИ! Поэтому более точной количественное оценкой самодостаточности можно считать пропорцию золотого сечения. Однако для практического использования мерой самодостаточности, определяющей качественное состояние объекта, живет он в гармонии с окружающим миром, или нет, оценка 2/3 является даже предпочтительнее. Глубокая взаимосвязь этого принципа с золотым сечением показана на рис. 4, на котором рукой великого мастера -Л еонардо да Винчи были приведены самые замечательные свойства золотого сечения и их взаимосвязь с ЕДИНЫМ ЗАКОНОМ. И очень жаль, что ЭТОГО НЕ ПОНИМАЮТ ЕЩЕ МНОГИЕ УЧЕНЫЕ ДАЖЕ СЕГОДНЯ. ПОЗОР!!!

5.2. САМОВОСПРОИЗВЕДЕНИЕ. САМОРАЗВИТИЕ.

Из принципов построения универсальной логики ( ) следует, что бесконечномерная логика в рамках эволюции одного и того же семейства, формирует бинарную спираль.

рис. 11

В этой схеме узловые точки характеризует нисходящую спираль эволюции логического семейства бинарной спирали (правый винт). По индукции можно определить, что левый винт будет определять восходящую спираль этого семейства. Эта эволюционная бинарная спираль характеризует самовоспроизведение и саморазвитие логического семейства. Пусть мы имеем начальную логику < - i ,-1 >. Тогда, изображая оси комплексной системы отсчета в соответствии с правилом обхода тетраэдра по кресту, эволюцию логик можно отразить так, как показано на рис.12 рис. 12 Из схемы видно, что при каждом переходе от одной логики к другой, по направлению стрелок, происходит зеркальное самокопирование логики. И когда мы завершим "круг эволюции", то последняя и первая логики окажутся противоположными друг к другу. Следующая попытка приводит уже к логике бинарного удвоения, т.к. клетка оказывается занятой. В результате рождается логика, отличающаяся от первой масштабностью, вместо < -i,-1 > рождается пара < -2 i ,-2 >. Отметим, что последовательное зеркальное копирование логик приводит к их зеркальной инверсии по диагоналям. Так, по диагонали - i ,+1 мы имеем логики <- i ,-1> <+1,+ i >. Из правил обхода вершин тетраэдра по кресту мы получаем, что эти логики образуют крест в тетраэдре, если соответствующие ребра спроектировать на плоскость. П о диагонали -1,+ i мы получили взаимодополнительную пару логик <-1,- i > <+ i ,+1> , также образующую крест. На рис. 11, стороны квадратов ориентированы по направлению крещения. Поэтому противоположные стороны этого квадрата являются перекладинами креста. Отметим, что в тетраэдре существует еще и третий крест, образованной ребрами <+ i ,- i > и <-1,+1> . Но этот крест несет другие функции , о которых будет сказано в другом месте. Но схема на рис. 6 обосновывает только простое самовоспризводство логик. Оно может порождать многомерный мир "черно-белых" копий, которые могут характеризоваться только разными "оттенками". В соответствии с принципами самоорганизации логики должны иметь возможность к саморазвитию . И такая возможность реализуется (рис. 13). рис. 13 Здесь в квадрате II вначале происходит самокопирование исходной логики, а в третьем квадрате, происходит процесс саморазвития . Здесь вначале первый и второй квадрат складываются со сдвигом, а затем воспроизводятся в квадрате III . Затем полученная цепочка зеркально копируется в квадрат IV , где происходит "замыкание" цепочки. В результате рождается тетраэдр, с четырьмя вершинами, т.е. рождается комплексная логика. Так из пары <1,1> рождается пара <2,2>. Так рождается П ервый период Периодической системы логических элементов. Возьмем теперь вторую пару, состоящую из двух логических соседних подоболочек -<1,2>. расписывая эволюцию этой пары по квадратам в соответствии с вышеприведенными правилами, мы получим пару <3,3>. Присоединяя ее к начальной цепочке <1,1,2>, мы получим <1,1,2,3>/ Тогда эволюция пары <2,3> произведет пару <5,5> и, соответственно, цепочку <1,1,3,5,>. Нетрудно увидеть, что рождается ряд Фибоначчи , являющийся основой золотого сечения. И этот ряд рождается естественным образом, в основе его лежит Единый Периодический закон эволюции и вытекающие из него принципы самоорганизации (самодостаточность, саморегуляция , самовоспроизведение, саморазвитие, самонормирование ).

5.3. РЯД ФИБОНАЧЧИ И БИНАРНЫЙ РЯД

Возьмем теперь, в качестве логических пар целостную пару <2,2>. Эта пара будет характеризовать количественный состав первой логической оболочки. Тогда, в процессе ее "крещения" у нас произведется следующая бинарная пара <4,4>. Эта пара по своей структуре будет характеризовать звездный тетраэдр (или куб), имеющий восемь вершин. Мы получили первую подоболочку второго периода. Удвоение этих подоболочек даст пару <8,8>, эволюция которой приведет к паре <16,16>, а далее к паре <32,32>. Соединяя полученные бинарные пары в единую цепочку, мы получаем ряд <2, 8,16,32>. Именно такая последовательность характеризует количественный состав оболочек Периодической системы химических элементов. Таким образом, единство ряда Фибоначчи и бинарного ряда является неоспоримым фактом. Периодическая система химических элементов, бинарный ряд, ряд Фибоначчи и золотое сечение оказываются тесно взаимосвязанными.
Рис. 14 Из последней схемы видно, что производящие функции этих рядов еще и тесно взаимосвязаны с биномом Ньютона (1-х) - n .

Между рядом Фибоначчи и бинарным рядом также существует прямая связь (рис. 4)

Рис. 15

На этом рисунке видно, как из исходного соотношения (1-1-2), используя бинарный ряд, выстраивается весь ряд Фибоначчи. Эту схему приводит в своей книге Д. Мельхиседек ("Древняя тайна Цветка Жизни", том. 2, стр.283). Этот рисунок показывает семейное дерево трутня пчелы. Мельхиседек подчеркивает, что ряд Фибоначчи (1-1-2-3-5-8-13-...) является женским рядом, в то время как бинарный ряд (1-2-4-8-16-32-...) является мужским. И это правильно (Генная память , Информация , О времени ) . На указанных страницах приводится обоснование того, что генная память, возрождая Прошлое , или синтезируя Будущее, формирует именно бинарный ряд и именно по закону, приведенному на рисунке 4.

6. О ДРУГИХ СВОЙСТВАХ РЯДА ФИБОНАЧЧИ

Всем известно, что ритмы (волны) пронизывают всю нашу жизнь. Поэтому всеобщность пропорции золотого сечения необходимо проиллюстрировать и на примере волновых колебаний. Рассмотрим гармонический процесс колебаний струны (http://ftp.decsy.ru/nanoworld/index.htm ). На струне могут создаваться стоячие волны основной и высших гармоник (обертонов). Длины полуволн гармонического ряда соответствуют функции 1/ n , где n натуральное число. Длины полуволн могут быть выражены в процентах от длины полуволны основной гармоники: 100%, 50%, 33%, 25%, 20%... В случае воздействия на произвольный участок струны будут возбуждаться все гармоники с различными амплитудными коэффициентами, которые зависят от координаты участка, от ширины участка и от частотно-временных характеристик воздействия. Учитывая разные знаки фаз четных и нечетных гармоник, можно получить знакопеременную функцию, которая выглядит приблизительно следующим образом: Если точку закрепления принять за начало отсчета, а середину струны за 100%, то максимум восприимчивости по 1-ой гармонике будет соответствовать 100%, по 2-й – 50%, по 3-ей – 33% и т.д. Посмотрим, где будет наша функция пересекать ось абсцисс. 62%, 38%, 23.6%, 14.6%, 9%, 5.6%, 3.44%, 2.13%,1.31%, 0.81%, 0.5%, 0.31%, 0.19%, 0.12%, ... Это пропорция золотого вурфа , под которым понимают последовательный ряд отрезков, когда смежные отрезки находятся в отношении золотого сечения. Каждое следующее число в 0.618 раз отличается от предыдущего. Получилось следующее: Возбуждение струны в точке, делящей ее в отношении золотого сечения на частоте близкой к основной гармонике, не вызовет колебаний струны, т.е. точка золотого сечения – это точка компенсации, демпфирования. Для демпфирования на более высоких частотах, к примеру, на 4-ой гармонике, точку компенсации нужно выбрать в 4-ом пересечении функции с осью абсцисс. Таким образом, периодичность изменения свойств двойственного отношения оказывается связана с нормой самодостаточности, рядом Фибоначчи, а также и со свойствами звездного тетраэдра, отражающего принцип восходящей и нисходящей спирали. Поэтому можно сказать, что тайны Золотого сечения, тайны ряда Фибоначчи, тайны их всеобщности в мире живой и неживой Природы больше не существует. Золотое сечение и ряд Фибоначчи отражают самую фундаментальную закономерность Иерархии - закономерность двойственности, а сам ряд Фибоначчиотражает не только одну из главных форм проявления этой закономерности -т риединство, но и характеризует нормы самодостаточности двойственного отношения в процессе его эволюции. 7. О СЛОЖНОМ ОТНОШЕНИИ Рассмотренные выше свойства золотого сечения и ряда Фибоначчи и их взаимосвязь, позволяют высказать предположение о связи с Единым законом эволюции двойственного отношения еще одного замечательного отношения, которое в проективной геометрии известно как сложное отношение точек ABCD . Рис. 16 Это число обладает тем свойством, что оно в точности одно и то же как. д ля изображения, так и для оригинала. Если вам нужно вычислить х , то не играет роли, измеряете ли вы расстояние на изображении или на самом участке. Фотокамера может обмануть. Она обманывает, когда выдает равные длины за неравные и прямые углы за непрямые. Единственное, что она не искажает,- это выражение Зн ачение этого выражения может быть найдено прямо из фотографии. И все, что можно с уверенностью утверждать, пользуясь свидетельством фотографии, может быть выражено в терминах таких величин. Обычно, в качестве сокращенной записи сложного отношения используется символ ABCD . Перерисуем теперь схему сложного отношения в пространственном виде Рис. 17 Известно, что золотое сечение выражается пропорцией где числитель является меньшим числом, а знаменатель-большим . Применительно к рисунку 17 золотая пропорция будет отражаться в треугольнике ABC , например, векторной суммой AB = BC + CA . Если углы между катетами будут равны нулю, то получим деление отрезка пополам. Если угол равен π / 2, то получим прямоугольный треугольник со сторонами 1, Ф , Ф 0,5 ; Следовательно, мы имеем исходное уравнение Ф 2 -Ф=1, записанное в векторной форме -г ипотенуза является единицей, а катеты являются ортогональными друг к другу, что и отражается в уравнении золотого сечения. При любом другом угле описываются некие замкнутые пространства. Сравнение рисунков 16 и 17 показывает также, что прямая линия (рис.16), порождающая сложное отношение, трансформируется в ломаную , и сложное отношение порождается процессом " обхода по кресту ". При этом Последняя вершина ломаной линии замыкается на П ервую . В результате мы получаем уже известное из животворящего креста
Рис. 18
правило рычага- "выигрываешь в силе, проигрываешь в расстоянии": - умножение перекладин креста и деление на длину плеч, определяющих переход с одной перекладины на другую. При построении этих более сложных отношений необходимо учитывать, что в формировании сложного отношения, точно также, как и в ряде Фибоначчи, участвуют только две соседних вершины ломаной линии. Это правило рычага, с использованием золотого сечения можно записать в следующем виде . А теперь мы можем построить сложное отношение на тетраэдре, учитывая, что расстояния от всех вершин пирамиды до точки О одинаково.
Рис. 19
Из рисунков 14-19 можно понять и принципы построения более сложных отношений, для пространств с большей мерностью, т.е. можно сказать, что n -мерное сложное отношение отражает процесс формирования монадного кристалла n -мерности и потому "упражнения" по формированию более сложных отношений могут иметь самостоятельный интерес (Сложное отношение ). Но все значения сложного отношения х , (1/х ), (х-1)/х , х /(х-1), 1/(1-х), (1-х), х ,... являются частями уравнения золотого сечения х 2 - х - 1 =0 или х (х -1) =1. 7. ЗАКОН СОХРАНЕНИЯ ЗОЛОТОГО СЕЧЕНИЯ Рассмотренные выше свойства золотого сечения и, в первую очередь, свойства сложного отношения позволяют говорить о том, что золотое сечение формирует главный закон мироздания, отражающий в себе главный закон сохранения- закон сохранения золотого сечения . Соотношения x =0,618..., 1 / x =1,618, 1-1/ x =-0,618..., 1/(1-1/ x )=-1,618,.... образуют бесконечный ряд, в котором первые четыре значения образуют крест золотого сечения. При этом всякий раз, когда получается величина, большая значения золотого сечения, то происходит нормировка ОБЪЕКТа . От него вычленяется единица и процесс эволюции продолжается! Однако для пятого и шестого значений мы получаем значения " -2,616 " и " -0,382 ", после чего процесс начинается с начала. Полученный бесконечный ряд значений 0,618 и 1,618 является причиной, по которой золотое сечение лежит в основе гармонии мира. Закон сохранения (Законы сохранения) золотого сечения можно продемонстировать во вращающемся кресте (свастике). Ниже, на странице, вскрывающей тайны информации (Информация , О времени) будут показано, что золотое сечение, генная память лежат в основе самого понятия информации, о природных механизмах эволюции монады "ОБРАЗ-ПОДОБИЕ" во ВРЕМЕНИ. Таким образом, сущность нормирования сводится к получению пропорций золотого сечения, т.е. все чудесные свойства сложного отношения четырех точек определяются свойствами животворящего креста, что сложное отношение тесно взаимосвязано с золотым сечением, формируя закон сохранения золотого сечения. РЕЗЮМЕ 1. Ни у кого уже не возникает сомнений, что золотое сечение лежит в основе гармонии мироздания, а ряд Фибоначчи порождает эту замечательную пропорцию. Дополнительную информацию о свойствах золотого сечения любознательные читатели могут получить на сайте www. goldenmuseum . com . Эта поистине золотая пропорция имеет такое множество замечательных свойств, что открытие новых свойств уже ни у кого не вызывает удивления.

18.04.2011 А. Ф. Афанасьев Обновлено 16.06.12

Размеры и пропорции - одна из главных задач в поисках художественного образа любого произведения пластического искусства. Понятно, что вопрос о размерах решается с учетом помещения, где оно будет находиться, и окружающих его предметов.

Говоря о пропорциях (соотношении размерных величин), мы учитываем их в формате плоского изображения (картина, маркетри), в соотношениях габаритных размеров (длина, высота, ширина) объемного предмета, в соотношении двух различных по высоте или длине предметов одного ансамбля, в соотношении размеров двух явно выделяющихся частей одного и того же предмета и т. д.

В классике изобразительного искусства на протяжении многих веков прослеживается прием построения пропорций, называемый золотым сечением, или золотым числом (этот термин введен Леонардо да Винчи). Принцип золотого сечения, или динамичной симметрии, заключается в том, что «отношение между двумя частями единого целого равно отношению ее большей части к целому» (или соответственно целого к большей части). Математически это

число выражается как - 1 ± 2 ?5 - что дает 1,6180339... или 0,6180339... В искусстве за золотое число принимается 1,62, т. е. приближенное выражение отношения большей величины в пропорции к ее меньшей величине.
От приближенного к более точному это отношение может быть выражено: и т. д., где: 5+3=8, 8+5=13 и т. д. Или: 2,2:3,3:5,5:8,8 и т. д., где 2,2+3,3-5,5 и т. д.

Графически золотое сечение можно выразить соотношением отрезков, получающихся различными построениями. Удобнее, на наш взгляд, построение, показанное на рис. 169: если к диагонали полуквадрата добавить его короткую сторону, то получится величина в отношении золотого числа к его длинной стороне.

Рис. 169. Геометрическое построение прямоугольника в золотом сечении 1,62: 1. Золотое число 1,62 в отношении отрезков (а и Ь)

Рис. 170. Графическое построение функции золотой пропорции 1,12: 1


Пропорция двух величин золотого сечения

создает зрительное ощущение гармонии и равновесия. Есть и другое гармоничное соотношение двух смежных величин, выражаемое числом 1,12. Оно является функцией золотого числа: если взять разность двух величин золотого сечения, разделить ее также в золотой пропорции и каждую долю добавить к меньшей величине исходного золотого сечения, то получится соотношение 1,12 (рис. 170). В таком отношении, например, проводится средний элемент (полочка) в буквах Н, Р, Я и т. д. в некоторых шрифтах, берутся пропорции высоты и ширины для широких букв, также встречается это отношение и в природе.

Золотое число наблюдается в пропорциях гармонично развитого человека (рис. 171): длина головы делит в золотом сечении расстояние от талии до макушки; коленная чашечка также делит расстояние от талии до подошвы ног; кончик среднего пальца вытянутой вниз руки делит в золотой пропорции весь рост человека; отношение фалангов пальцев - тоже золотое число. Это же явление наблюдается и в иных конструкциях природы: в спиралях моллюсков, в венчиках цветков и др.

Рис. 172. Золотые пропорции резного листа герани (пеларгонии). Построение: 1) С помощью масштабного графика (см. рис. 171) строим? ABC, Рис. 173. Пятилепестковый и трехлепестковый лист винограда. Отношение длины к ширине составляет 1,12. Золотой пропорцией выражается

На рис. 172 и 173 показано построение рисунка листа герани (пеларгонии) и листа винограда в пропорциях золотых чисел 1,62 и 1,12. В листе герани базой построения являются два треугольника: ABC и CEF, где отношение высоты и основания каждого из них выражается числами 0,62 и 1,62, а расстояния между тремя парами наиболее удаленных точек листа равны: AB=CE=SF. Построение указано на чертеже. Конструкция такого листа является типичной для герани, имеющей подобные резные листья.

Обобщенный лист платана (рис. 173) имеет пропорции так же, как и лист винограда, в отношении 1,12, но большую долю у листа винограда составляет его длина, а у листа платана - его ширина. Лист платана имеет три пропорциональных размера в отношении 1,62. Такое соответствие в архитектуре называется триадой (для четырех пропорций - тетрада и далее: пектада, гексода).

На рис. 174 показан способ построения в пропорциях золотого сечения листа клена. При соотношении ширины к длине в 1,12 он имеет несколько пропорций с числом 1,62. За основу построения взяты две трапеции, у которых отношение высоты и длины основания выражается золотым числом. Построение показано на чертеже, также приведены варианты формы листа клена.

В произведениях изобразительного искусства художник или скульптор осознанно или подсознательно, доверяя своему тренированному глазу, часто применяет соотношение размеров в золотой пропорции. Так, работая над копией с головы Христа (по Микеланджело), автор данной книги заметил, что смежные завитки в прядях волос по своим размерам отражают отношение золотого сечения, а по форме - спираль Архимеда, эвольвенту. Читатель сам может убедиться, что в ряде картин художников-классиков центральная фигура расположена от сторон формата на расстояниях, образующих пропорцию золотого сечения (например, размещение головы как по вертикали, так и по горизонтали в портрете М. И. Лопухиной В. Боровиковского; положение по вертикали центра головы в портрете А. С. Пушкина кисти О. Кипренского и др.). То же самое иногда можно видеть и с размещением линии горизонта (Ф. Васильев: «Мокрый луг», И. Левитан: «Март», «Вечерний звон»).

Конечно, указанное правило не всегда есть решение проблемы композиции, и оно не должно подменять в творчестве художника интуицию ритма и пропорций. Известно, например, что некоторые художники применяли для своих композиций отношения «музыкальных чисел»: терции, кварты, квинты (2:3, 3:4 и др.). Искусствоведы не без основания отмечают, что конструкцию любого классического памятника архитектуры или скульптуры при желании можно подогнать под какое угодно отношение чисел. Нашей же задачей в данном случае и особенно задачей начинающего художника или резчика по дереву является научиться строить обдуманную композицию своего произведения не по случайным соотношениям, а по гармоничным пропорциям, проверенным практикой. Эти гармоничные пропорции надо уметь выявить и подчеркнуть конструкцией и формой изделия.

Рассмотрим в качестве примера поиска гармоничной пропорции определение размеров рамки к работе, показанной на рис. 175. Формат помещаемого в нее изображения задан в пропорции золотого сечения. Внешние размеры рамки при одинаковой ширине ее сторон золотой пропорции не дадут. Поэтому отношение длины и ширины ее (ЗЗ0X220) принято несколько меньше золотого числа, т. е. равным 1,5, а ширина поперечных звеньев соответственно увеличена по сравнению с боковыми сторонами. Это позволило выйти на размеры рамки в свету (для картины), дающие пропорции золотого сечения. Отношение же ширины нижнего звена рамки к ширине его верхнего звена подогнано к другому золотому числу, т. е. к 1,12. Также отношение ширины нижнего звена к ширине бокового (94:63) близко к 1,5 (на рисунке - вариант слева).

Теперь сделаем эксперимент: увеличим длинную сторону рамки до 366 мм за счет ширины нижнего звена (она будет 130 мм) (на рисунке - вариант справа), чем приблизим не только отношение но и к золотому
числу 1,62 вместо 1,12. В результате получилась новая композиция, которая может быть применена в каком-либо ином изделии, но для рамки возникает желание сделать ее короче. Закройте нижнюю часть ее линейкой настолько, чтобы глаз «принял» получившуюся пропорцию, и мы получим ее длину 330 мм, т. е. подойдем к исходному варианту.

Так, анализируя различные варианты (могут быть и другие кроме двух разобранных), мастер останавливается на единственно возможном с его точки зрения решении.

Применение принципа золотого сечения в поисках нужной композиции лучше делать, используя несложный прибор, принципиальная схема конструкции которого показана на рис. 176. Две линейки этого прибора могут, вращаясь вокруг шарнира В, образовывать произвольный угол. Если при любом растворе угла разделить точкой К расстояние АС в золотом сечении и смонтировать еще две линейки: КМ\\ВС и КЕ\\АВ с шарнирами в точках К, Е и М, то при любом растворе АС это расстояние будет делиться точкой К в отношении золотого сечения.

Золотое сечение - это универсальное проявление структурной гармонии. Оно встречается в природе, науке, искусстве - во всем, с чем может соприкоснуться человек. Однажды познакомившись с золотым правилом, человечество больше ему не изменяло.

Определение.


Наиболее емкое определение золотого сечения гласит, что меньшая часть относится к большей, как большая - ко всему целому. Приблизительная его величина - 1, 6180339887. В округленном процентном значении пропорции частей целого будут соотноситься как 62% на 38%. Это соотношение в формах пространства и времени действует.

Древние видели в золотом сечении отражение космического порядка, а Иоганн Кеплер называл его одним из сокровищ геометрии. Современная наука рассматривает золотое сечение как "Асимметричную Симметрию", называя его в широком смысле универсальным правилом, отражающим структуру и порядок нашего мироустройства.

История.
Представление о золотых пропорциях имели древние египтяне, знали о них и на Руси, но впервые научно золотое сечение объяснил монах лука пачоли в книге "Божественная Пропорция" (1509), иллюстрации к которой предположительно сделал Леонардо да Винчи. Пачоли усматривал в золотом сечении божественное триединство: малый отрезок олицетворял сына, большой - отца, а целое - святой дух.

Непосредственным образом с правилом золотого сечения связано имя итальянского математика Леонардо Фибоначчи. В результате решения одной из задач ученый вышел на последовательность чисел, известную сейчас как ряд Фибоначчи: 1, 2, 3, 5, 8, 13, 21, 34, 55 и т. д. на отношение этой последовательности к золотой пропорции обратил внимание Кеплер: "Устроена она так, что два Младших Члена Этой Нескончаемой Пропорции в Сумме Дают Третий Член, а Любые два Последних Члена, Если их Сложить, Дают Следующий Член, Причем та же Пропорция Сохраняется до Бесконечности". Сейчас ряд Фибоначчи - это арифметическая основа для расчетов пропорций золотого сечения во всех его проявлениях

Фибоначчи числа - гармоническое деление, мера красоты. Золотое сечение в природе, человеке, искусстве, архитектуре, скульптуре, дизайне, математике, музыке https://psihologiyaotnoshenij.com/stati/zolotoe-sechenie-kak-eto-rabotaet

Леонардо да Винчи также много времени посвятил изучению особенностей золотого сечения, скорее всего, именно ему принадлежит и сам термин. Его рисунки стереометрического тела, образованного правильными пятиугольниками, доказывают, что каждый из полученных при сечении прямоугольников дает соотношения сторон в золотом делении.

Со временем правило золотого сечения превратилось в академическую рутину, и только философ Адольф цейзинг в 1855 году вернул ему вторую жизнь. Он довел до абсолюта пропорции золотого сечения, сделав их универсальными для всех явлений окружающего мира. Впрочем, его "Математическое Эстетство" вызывало много критики.

Природа.
Даже не вдаваясь в расчеты, золотое сечение можно без труда обнаружить в природе. Так, под него попадают соотношение хвоста и тела ящерицы, расстояния между листьями на ветке, есть золотое сечение и в форме яйца, если условную линию провести через его наиболее широкую часть.

Белорусский ученый Эдуард сороко, который изучал формы золотых делений в природе, отмечал, что все растущее и стремящееся занять свое место в пространстве, наделено пропорциями золотого сечения. По его мнению, одна из самых интересных форм это закручивание по спирали.
Еще Архимед, уделяя внимание спирали, вывел на основе ее формы уравнение, которое и сейчас применяется в технике. Позднее Гете отмечал тяготение природы к спиральным формам, называя спираль "Кривой Жизни". Современными учеными было установлено, что такие проявления спиральных форм в природе как раковина улитки, расположение семян подсолнечника, узоры паутины, движение урагана, строение днк и даже структура галактик заключают в себе ряд Фибоначчи.

Человек.
Модельеры и дизайнеры одежды все расчеты делают, исходя из пропорций золотого сечения. Человек - это универсальная форма для проверки законов золотого сечения. Конечно, от природы далеко не у всех людей пропорции идеальны, что создает определенные сложности с подбором одежды.

В дневнике Леонардо да Винчи есть рисунок вписанного в окружность обнаженного человека, находящегося в двух наложенных друг на друга позициях. Опираясь на исследования римского архитектора витрувия, Леонардо подобным образом пытался установить пропорции человеческого тела. Позднее французский архитектор Ле корбюзье, используя "Витрувианского Человека" Леонардо, создал собственную шкалу "гармонических пропорций", повлиявшую на эстетику архитектуры XX века.

Адольф цейзинг, исследуя пропорциональность человека, проделал колоссальную работу. Он измерил порядка двух тысяч человеческих тел, а также множество античных статуй и вывел, что золотое сечение выражает среднестатистический закон. В человеке ему подчинены практически все части тела, но главный показатель золотого сечения это деление тела точкой пупа.
В результате измерений исследователь установил, что пропорции мужского тела 13: 8 ближе к золотому сечению, чем пропорции женского тела - 8: 5.

Искусство пространственных форм.
Художник Василий суриков говорил, "что в Композиции Есть Непреложный Закон, Когда в Картине Нельзя Ничего ни Убрать, ни Добавить, Даже Лишнюю Точку Поставить Нельзя, это Настоящая Математика". Долгое время художники следовали этому закону интуитивно, но после Леонардо да Винчи процесс создания живописного полотна уже не обходится без решения геометрических задач. Например, Альбрехт Дюрер для определения точек золотого сечения использовал изобретенный им пропорциональный циркуль.

Искусствовед Ф. в. Ковалев, подробно исследовав картину Николая Ге "Александр Сергеевич Пушкин в Селе Михайловском", отмечает, что каждая деталь полотна, будь то камин, этажерка, кресло или сам поэт, строго вписаны в золотые пропорции.

Исследователи золотого сечения без устали изучают и замеряют шедевры архитектуры, утверждая, что они стали таковыми, потому что созданы по золотым канонам: в их списке великие пирамиды гизы, собор парижской богоматери, храм Василия блаженного, Парфенон.
И сегодня в любом искусстве пространственных форм стараются следовать пропорциям золотого сечения, так как они, по мнению искусствоведов, облегчают восприятие произведения и формируют у зрителя эстетическое ощущение.

Слово, звук и кинолента.
Формы временно? Го искусства по-своему демонстрируют нам принцип золотого деления. Литературоведы, к примеру, обратили внимание, что наиболее популярное количество строк в стихотворениях позднего периода творчества Пушкина соответствует ряду Фибоначчи - 5, 8, 13, 21, 34.

Действует правило золотого сечения и в отдельно взятых произведениях русского классика. Так кульминационным моментом "Пиковой Дамы" является драматическая сцена Германа и графини, заканчивающаяся смертью последней. В повести 853 строки, а кульминация приходится на 535 строке (853: 535=1, 6) - это и есть точка золотого сечения.

Советский музыковед э. к. Розенов отмечает поразительную точность соотношений золотого сечения в строгих и свободных формах произведений Иоганна Себастьяна Баха, что соответствует вдумчивому, сосредоточенному, технически выверенному стилю мастера. Это справедливо и в отношении выдающихся творений других композиторов, где на точку золотого сечения обычно приходится наиболее яркое или неожиданное музыкальное решение.
Кинорежиссер Сергей эйзенштейн сценарий своего фильма "Броненосец Потёмкин" сознательно согласовывал с правилом золотого сечения, разделив ленту на пять частей. В первых трех разделах действие разворачивается на корабле, а в последних двух - в Одессе. Переход на сцены в городе и есть золотая середина фильма.

Во вселенной еще много неразгаданных тайн, некоторые из которых ученые уже смогли определить и описать. Числа Фибоначчи и золотое сечение составляют основу разгадки окружающего мира, построения его формы и оптимального зрительного восприятия человеком, с помощью которых он может ощущать красоту и гармонию.

Золотое сечение

Принцип определения размеров золотого сечения лежит в основе совершенства целого мира и его частей в своей структуре и функциях, его проявление можно видеть в природе, искусстве и технике. Учение о золотой пропорции было заложено в результате исследований древними учеными природы чисел.

В основе его лежит теория о пропорциях и соотношениях делений отрезков, которое было сделано еще древним философом и математиком Пифагором. Он доказал, что при разделении отрезка на две части: X (меньшую) и Y (большую), отношение большего к меньшему будет равно отношению их суммы (всего отрезка):

В результате получается уравнение: х 2 - х - 1=0, которое решается как х=(1±√5)/2.

Если рассмотреть соотношение 1/х, то оно равно 1,618…

Свидетельства использования древними мыслителями золотой пропорции приведены в книге Эвклида «Начала», написанной еще в 3 в. до н.э., который применял это правило для построения правильных 5-угольников. У пифагорейцев эта фигура считается священной, поскольку является одновременно симметричной и асимметричной. Пентаграмма символизировала жизнь и здоровье.

Числа Фибоначчи

Знаменитая книга Liber abaci математика из Италии Леонардо Пизанского, который в последующем стал известен, как Фибоначчи, увидела свет в 1202 г. В ней ученый впервые приводит закономерность чисел, в ряду которых каждое число является суммой 2-х предыдущих цифр. Последовательность чисел Фибоначчи заключается в следующем:

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377 и т.д.

Также ученый привел ряд закономерностей:

  • Любое число из ряда, разделенное на последующее, будет равно значению, которое стремится к 0,618. Причем первые числа Фибоначчи не дают такого числа, но по мере продвижения от начала последовательности это соотношение будет все более точным.
  • Если же поделить число из ряда на предыдущее, то результат устремится к 1,618.
  • Одно число, поделенное на следующее через одно, покажет значение, стремящееся к 0,382.

Применение связи и закономерностей золотого сечения, числа Фибоначчи (0,618) можно найти не только в математике, но и в природе, в истории, в архитектуре и строительстве и во многих других науках.

Спираль Архимеда и золотой прямоугольник

Спирали, очень распространенные в природе, были исследованы Архимедом, который даже вывел ее уравнение. Форма спирали основана на законах о золотом сечении. При ее раскручивании получается длина, к которой можно применить пропорции и числа Фибоначчи, увеличение шага происходит равномерно.

Параллель между числами Фибоначчи и золотым сечением можно увидеть и построив «золотой прямоугольник», у которого стороны пропорциональны, как 1,618:1. Он строится, переходя от большего прямоугольника к малым так, что длины сторон будут равны числам из ряда. Построение его можно сделать и в обратном порядке, начиная с квадратика «1». При соединении линиями углов этого прямоугольника в центре их пересечения получается спираль Фибоначчи или логарифмическая.

История применения золотых пропорций

Многие древние памятники архитектуры Египта возведены с использованием золотых пропорций: знаменитые пирамиды Хеопса и др. Архитекторы Древней Греции широко использовалиих их при возведении архитектурных объектов, таких как храмы, амфитеатры, стадионы. Например, были применены такие пропорции при строительстве античного храма Парфенон, (Афины) и других объектов, которые стали шедеврами древнего зодчества, демонстрирующими гармонию, основанную на математической закономерности.

В более поздние века интерес к золотому сечению поутих, и закономерности были забыты, однако опять возобновился в эпоху Ренессанса вместе с книгой францисканского монаха Л. Пачоли ди Борго «Божественная пропорция» (1509 г.). В ней были приведены иллюстрации Леонардо да Винчи, который и закрепил новое название «золотое сечение». Также были научно доказаны 12 свойств золотой пропорции, причем автор рассказывал о том, как проявляется она в природе, в искусстве и называл ее «принципом построения мира и природы».

Витрувианский человек Леонардо

Рисунок, которым Леонардо да Винчи в 1492 г. проиллюстрировал книгу Витрувия, изображает фигуру человека в 2-х позициях с руками, разведенными в стороны. Фигура вписана в круг и квадрат. Этот рисунок принято считать каноническими пропорциями человеческого тела (мужского), описанными Леонардо на основе изучения их в трактатах римского архитектора Витрувия.

Центром тела как равноудаленной точкой от конца рук и ног считается пупок, длина рук приравнивается к росту человека, максимальная ширина плеч = 1/8 роста, расстояние от верха груди до волос = 1/7, от верха груди до верха головы =1/6 и т.д.

С тех пор рисунок используется в виде символа, показывающего внутреннюю симметрию тела человека.

Термин «Золотое сечение» Леонардо использовал для обозначения пропорциональных отношений в фигуре человека. Например, расстояние от пояса до ступней ног соотносится к аналогичному расстоянию от пупка до макушки так же, как рост к первой длине (от пояса вниз). Эти вычисление делается аналогично соотношению отрезков при вычислении золотой пропорции и стремится к 1,618.

Все эти гармоничные пропорции часто используются деятелями искусства для создания красивых и впечатляющих произведений.

Исследования золотого сечения в 16-19 веках

Используя золотое сечение и числа Фибоначчи, исследовательскую работу по вопросу о пропорциях продолжают уже не одно столетие. Параллельно с Леонардо да Винчи немецкий художник Альбрехт Дюрер также занимался разработкой теории правильных пропорций тела человека. Для этого им даже был создан специальный циркуль.

В 16 в. вопросу о связи числа Фибоначчи и золотого сечения были посвящены работы астронома И. Кеплера, который впервые применил эти правила для ботаники.

Новое «открытие» ожидало золотое сечение в 19 в. с опубликованием «Эстетического исследования» немецкого ученого профессора Цейзига. Он возвел эти пропорции в абсолют и объявил о том, что они универсальны для всех природных явлений. Им были проведены исследования огромного количества людей, вернее их телесных пропорций (около 2 тыс.), по итогам которых сделаны выводы о статистических подтвержденных закономерностях в соотношениях различных частей тела: длины плеч, предплечий, кистей, пальцев и т.д.

Были исследованы также предметы искусства (вазы, архитектурные сооружения), музыкальные тона, размеры при написании стихотворений — все это Цейзиг отобразил через длины отрезков и цифры, он же ввел термин «математическая эстетика». После получения результатов выяснилось, что получается ряд Фибоначчи.

Число Фибоначчи и золотое сечение в природе

В растительном и животном мире существует тенденция к формообразованию в виде симметрии, которая наблюдается в направлении роста и движения. Деление на симметричные части, в которых соблюдаются золотые пропорции, — такая закономерность присуща многим растениям и животным.

Природа вокруг нас может быть описана с помощью чисел Фибоначчи, например:

  • расположение листьев или веток любых растений, а также расстояния соотносятся с рядом приведенных чисел 1, 1, 2, 3, 5, 8, 13 и далее;
  • семена подсолнуха (чешуя на шишках, ячейки ананаса), располагаясь двумя рядами по закрученным спиралям в разные стороны;
  • соотношение длины хвоста и всего тела ящерицы;
  • форма яйца, если провести линию условно через широкую его часть;
  • соотношение размеров пальцев на руке человека.

И, конечно, самые интересные формы представляют закручивающиеся по спирали раковины улиток, узоры на паутине, движение ветра внутри урагана, двойная спираль в ДНК и структура галактик — все они включают в себя последовательность чисел Фибоначчи.

Использование золотого сечения в искусстве

Исследователи, занимающиеся поиском в искусстве примеров использования золотого сечения, подробно исследуют различные архитектурные объекты и произведения живописи. Известны знаменитые скульптурные работы, создатели которых придерживались золотых пропорций, — статуи Зевса Олимпийского, Аполлона Бельведерского и

Одно из творений Леонардо да Винчи — «Портрет Моны Лизы» — уже многие годы является предметом исследований ученых. Ими было обнаружено, что композиция работы целиком состоит из «золотых треугольников», объединенных вместе в правильный пятиугольник-звезду. Все работы да Винчи являются свидетельством того, насколько глубоки были его познания в строении и пропорциях тела человека, благодаря чему он и смог уловить невероятно загадочную улыбку Джоконды.

Золотое сечение в архитектуре

В качестве примера ученые исследовали шедевры архитектуры, созданные по правилам «золотого сечения»: египетские пирамиды, Пантеон, Парфенон, Собор Нотр-Дам де Пари, храм Василия Блаженного и др.

Парфенон — одно из красивейших зданий в Древней Греции (5 в. до н.э.) — имеет 8 колонн и 17 по разным сторонам, отношение его высоты к длине сторон равно 0,618. Выступы на его фасадах сделаны по «золотому сечению» (фото ниже).

Одним из ученых, который придумал и успешно применял усовершенствование модульной системы пропорций для архитектурных объектов (так называемый «модулор»), — был французский архитектор Ле Корбюзье. В основу модулора положена измерительная система, связанная с условным делением на части человеческого тела.

Русский архитектор М. Казаков, построивший несколько жилых домов в Москве, а также здания сената в Кремле и Голицынской больницы (сейчас 1-я Клиническая им. Н. И. Пирогова), — был одним из архитекторов, которые использовали при проектировании и строительстве законы о золотом сечении.

Применение пропорций в дизайне

В дизайне одежды все модельеры делают новые образы и модели с учетом пропорций человеческого тела и правил золотого сечения, хотя от природы не все люди имеют идеальные пропорции.

При планировании ландшафтного дизайна и создании объемных парковых композиций с помощью растений (деревьев и кустарников), фонтанов и малых архитектурных объектов также могут применяться закономерности «божественных пропорций». Ведь композиция парка должна быть ориентирована на создание впечатления на посетителя, который свободно сможет ориентироваться в нем и находить композиционный центр.

Все элементы парка находятся в таких соотношениях, чтобы с помощью геометрического строения, взаиморасположения, освещения и света, произвести на человека впечатление гармонии и совершенства.

Применение золотого сечения в кибернетике и технике

Закономерности золотого сечения и чисел Фибоначчи проявляются также в переходах энергии, в процессах, происходящих с элементарными частицами, составляющих химические соединения, в космических системах, в генной структуре ДНК.

Аналогичные процессы происходят и в организме человека, проявляясь в биоритмах его жизни, в действии органов, например, головного мозга или зрения.

Алгоритмы и закономерности золотых пропорций широко используются в современной кибернетике и информатике. Одна из несложных задач, которую дают решать начинающим программистам, — написать формулу и определить, сумму чисел Фибоначчи до определенного числа, используя языки программирования.

Современные исследования теории о золотой пропорции

Начиная с середины 20 века, интерес к проблемам и влиянию закономерностей золотых пропорций на жизнь человека, резко возрастает, причем со стороны многих ученых различных профессий: математиков, исследователей этноса, биологов, философов, медицинских работников, экономистов, музыкантов и др.

В США с 1970-хгодов начинает выпускаться журнал The Fibonacci Quarterly, где публикуются работы на эту тему. В прессе появляются работы, в которых обобщенные правила золотого сечения и ряда Фибоначчи используют в различных отраслях знаний. Например, для кодирования информации, химических исследований, биологических и т.д.

Все это подтверждает выводы древних и современных ученых о том, что золотая пропорция многосторонне связана с фундаментальными вопросами науки и проявляется в симметрии многих творений и явлений окружающего нас мира.