Гармонические колебания определение. Колебание и волны. Гармоническое колебательное движение. Кинематика колебательного движения

  • 12.10.2019

Максимальные значения скорости и ускорения

Проанализировав уравнения зависимости v(t) и a(t), можно догадаться, что максимальные значения скорость и ускорение принимают в том случае, когда тригонометрический множитель равен 1 или -1. Определяются по формуле

Как получить зависимости v(t) и a(t)

7. Свободные колебания. Скорость, ускорение и энергия колебательного движения. Сложение колебаний

Свободные колебания (или собственные колебания ) - это колебания колебательной системы, совершаемые только благодаря первоначально сообщенной энергии (потенциальной или кинети­ческой) при отсутствии внешних воздействий.

Потенциальная или кинетическая энергия может быть сообщена, например, в механических системах через начальное смещение или начальную скорость.

Свободно колеблющиеся тела всегда взаимодействуют с другими телами и вместе с ними обра­зуют систему тел, которая называется колебательной системой .

Например, пружина, шарик и вертикальная стойка, к которой прикреплен верхний конец пружины (см. рис. ниже), входят в колебательную систему. Здесь шарик свободно скользит по струне (силы трения пренебрежимо малы). Если отвести шарик вправо и предоставить его самому себе, он будет совершать свободные колебания около положения равновесия (точки О ) вследствие действия силы упругости пружины, направленной к положению равновесия.

Другим классическим примером механической колебательной системы является математический маятник (см. рис. ниже). В данном случае шарик совершает свободные колебания под действием двух сил: силы тяжести и силы упругости нити (в колебательную систему входит также Земля). Их равнодействующая направлена к положению равновесия.

Силы, действующие между телами колебательной системы, называются внутренними силами . Внешними силами называют­ся силы, действующие на систему со стороны тел, не входящих в нее. С этой точки зрения свобод­ные колебания можно определить как колебания в системе под действием внутренних сил после того, как система выведена из положения равновесия.

Условиями возникновения свободных колебаний являются:

1) возникновение в них силы, возвращающей систему в положение устойчивого равновесия, после того как ее вывели из этого состояния;

2) отсутствие трения в системе.

Динамика свободных колебаний.

Колебания тела под действием сил упругости . Уравнение колебательного движения тела под действием силы упругости F (см. рис.) может быть получено с учетом второго закона Ньютона (F = mа ) и закона Гука (F упр = -kx ), где m - масса шарика, а - ускорение, приобретаемое шариком под действием силы упругости, k - коэффициент жесткости пружины, х - смещение тела от положения равновесия (оба уравнения записаны в проекции на горизонтальную ось Ох ). Приравнивая правые части этих уравнений и учитывая, что ускорение а - это вторая производная от координаты х (смещения), получим:

.

Это дифференциальное уравнение движения тела, колеблющегося под действием силы упругости: вторая производная координаты по времени (ускорение тела) прямо пропорциональна его координате, взятой с противоположным знаком.

Колебания математического маятника. Для получения уравнения колебания математического маятника (рисунок) необходимо разложить силу тяжести F T = mg на нормальную F n (направлен­ную вдоль нити) и тангенциальную F τ (касательную к траектории движения шарика - окружности) составляющие. Нормальная составляющая силы тяжести F n и сила упругости нити F ynp в сумме сооб­щают маятнику центростремительное ускорение, не влияющее на величину скорости, а лишь меня­ющее ее направление, а тангенциальная составляющая F τ является той силой, которая возвращает шарик в положение равновесия и заставляет его совершать колебательные движения. Используя, как и в предыдущем случае, закон Ньютона для тангенциального ускоренияma τ = F τ и учитывая, что F τ = -mg sinα , получим:

a τ = -g sinα ,

Знак минус появился потому, что сила и угол отклонения от положения равновесия α име­ют противоположные знаки. Для малых углов отклонения sin α ≈ α . В свою очередь, α = s/l , где s - дуга OA , I - длина нити. Учитывая, что а τ = s" , окончательно получим:

Вид уравнения аналогичен уравнению . Только здесь параметрами системы являются длина нити и ускорение свободного падения, а не жесткость пружины и масса шарика; роль координаты играет длина дуги (т. е. пройденный путь, как и в первом случае).

Таким образом, свободные колебания описываются уравнениями одного вида (подчиняются одним и тем же законам) независимо от физической природы сил, вызывающих эти колебания.

Решением уравнений и является функция вида:

x = x m cos ω 0 t (илиx = x m sin ω 0 t) .

То есть координата тела, совершающего свободные колебания, меняется с течением времени по закону косинуса или синуса, и, следовательно, эти колебания являются гармоническими:

В уравнении x = x m cos ω 0 t (или x = x m sin ω 0 t ), х m - амплитуда колебания, ω 0 - собственная циклическая (круговая) частота колебаний.

Циклическая частота и период свободных гармонических колебаний определяются свойствами системы. Так, для колебаний тела, прикрепленного к пружине, справедливы соотношения:

.

Собственная частота тем больше, чем больше жесткость пружины или меньше масса груза, что вполне подтверждается опытом.

Для математического маятника выполняются равенства:

.

Эта формула была впервые получена и проверена на опыте голландским ученым Гюйгенсом (современником Ньютона).

Период колебаний возрастает с увеличением длины маятника и не зависит от его массы.

Следует особо обратить внимание на то, что гармонические колебания являются строго периодическими (т. к. подчиняются закону синуса или косинуса) и даже для математического маятни­ка, являющегося идеализацией реального (физического) маятника, возможны только при малых углах колебания. Если углы отклонения велики, смещение груза не будет пропорционально углу отклонения (синусу угла) и ускорение не будет пропорционально смещению.

Скорость и ускорение тела, совершающего свободные колебания, также будут совершать гармонические колебания. Беря производную по времени функции (x = x m cos ω 0 t (или x = x m sin ω 0 t )), получим выражение для скорости:

v = -v m sin ω 0 t = -v m x m cos (ω 0 t + π/2),

гдеv m = ω 0 x m - амплитуда скорости.

Аналогично выражение для ускорения а получим, дифференцируя (v = -v m sin ω 0 t = -v m x m cos (ω 0 t + π/2) ):

a = -a m cos ω 0 t,

где a m = ω 2 0 x m - амплитуда ускорения. Таким образом, амплитуда скорости гармонических коле­баний пропорциональна частоте, а амплитуда ускорения - квадрату частоты колебания.

ГАРМОНИЧЕСКИЕ КОЛЕБАНИЯ
Колебания, при которых изменения физических величин происходят по закону косинуса или синуса (гармоническому закону), наз. гармоническими колебаниями. Например, в случае механических гармонических колебаний:. В этих формулах ω – частота колебания, x m – амплитуда колебания, φ 0 и φ 0 ’ – начальные фазы колебания. Приведенные формулы отличаются определением начальной фазы и при φ 0 ’ = φ 0 +π/2 полностью совпадают.
Это простейший вид периодических колебаний. Конкретный вид функции (синус или косинус) зависит от способа выведения системы из положения равновесия. Если выведение происходит толчком (сообщается кинетическая энергия), то при t=0 смещение х=0, следовательно, удобнее пользоваться функцией sin, положив φ 0 ’=0; при отклонении от положения равновесия (сообщается потенциальная энергия) при t=0 смещение х=х m , следовательно, удобнее пользоваться функцией cos и φ 0 =0.
Выражение, стоящее под знаком cos или sin, наз. фазой колебания: . Фаза колебания измеряется в радианах и определяет значение смещения (колеблющейся величины) в данный момент времени.
Амплитуда колебания зависит только от начального отклонения (начальной энергии, сообщенной колебательной системе).
Скорость и ускорение при гармонических колебаниях.
Согласно определению скорости, скорость – это производная от координаты по времени
Таким образом, мы видим, что скорость при гармоническом колебательном движении также изменяется по гармоническому закону, но колебания скорости опережают колебания смещения по фазе на π/2.
Величина - максимальная скорость колебательного движения (амплитуда колебаний скорости).
Следовательно, для скорости при гармоническом колебании имеем: , а для случая нулевой начальной фазы (см. график).
Согласно определению ускорения, ускорение – это производная от скорости по времени: - вторая производная от координаты по времени. Тогда: . Ускорение при гармоническом колебательном движении также изменяется по гармоническому закону, но колебания ускорения опережают колебания скорости на π/2 и колебания смещения на π (говорят, что колебания происходят в противофазе) .
Величина - максимальное ускорение (амплитуда колебаний ускорения). Следовательно, для ускорения имеем: , а для случая нулевой начальной фазы: (см. график).
Из анализа процесса колебательного движения, графиков и соответствующих математических выражений видно, что при прохождении колеблющимся телом положения равновесия (смещение равно нулю) ускорение равно нулю, а скорость тела максимальна (тело проходит положение равновесия по инерции), а при достижении амплитудного значения смещения – скорость равна нулю, а ускорение максимально по модулю (тело меняет направление своего движения).
Сравним выражения для смещения и ускорения при гармонических колебаниях: и .
Можно записать: - т.е. вторая производная смещения прямо пропорциональна (с противоположным знаком) смещению. Такое уравнение наз. уравнением гармонического колебания. Эта зависимость выполняется для любого гармонического колебания, независимо от его природы. Поскольку мы нигде не использовали параметров конкретной колебательной системы, то от них может зависеть только циклическая частота.
Часто бывает удобно записывать уравнения для колебаний в виде: , где T– период колебания. Тогда, если время выражать в долях периода подсчеты будут упрощаться. Например, если надо найти смещение через 1/8 периода, получим: . Аналогично для скорости и ускорения.

Неpедки случаи, когда система одновpеменно участвует в двух или нескольких независимых дpуг от дpуга колебаниях. В этих случаях обpазуется сложное колебательное движение, котоpое создается путем наложения (сложения) колебаний дpуг на дpуга. Очевидно, случаи сложения колебаний могут быть весьма pазнообpазны. Они зависят не только от числа складываемых колебаний, но и от паpаметpов колебаний, от их частот, фаз, амплитуд, напpавлений. Не пpедставляется возможным обозpеть все возможное pазнообpазие случаев сложения колебаний, поэтому огpаничимся pассмотpением лишь отдельных пpимеpов.
1. Сложение колебаний одного напpавления. Сложим два колебания одинаковой частоты, но pазличных фаз и амплитуд.

(4.40)
Пpи наложении колебаний дpуг на дpуга


Введем новые паpаметpы А и j согласно уpавнениям:

(4.42)
Система уpавнений (4.42) легко pешается.

(4.43)

(4.44)
Таким обpазом, для х окончательно получаем уpавнение

(4.45)
Итак, в pезультате сложения однонапpавленных колебаний одинаковой частоты получаем гаpмоническое (синусоидальное) колебание, амплитуда и фаза котоpого опpеделяется фоpмулами (4.43) и (4.44).
Рассмотpим частные случаи, пpи котоpых соотношения между фазами двух складываемых колебаний pазличны:


(4.46)
Сложим тепеpь однонапpавленные колебания одинаковой амплитуды, одинаковых фаз, но pазной частоты.


(4.47)
Рассмотpим случай, когда частоты близки дpуг к дpугу, т. е.w1~w2=w
Тогда пpиближенно будем считать, что (w1+w2)/2= w, а (w2-w1)/2 величина малая. Уpавнение pезультиpующего колебания будет иметь вид:

(4.48)
Его гpафик изобpажен на pис. 4.5 Такое колебание называется биением. Оно осуществляется с частотой w но его амплитуда совеpшает колебание с большим пеpиодом.

2. Сложение двух взаимно пеpпендикуляpных колебаний. Допустим, что одно колебание осуществляется вдоль оси х, дpугое - вдоль оси y. Результиpующее движение, очевидно, pасполагается в плоскости xy.
1. Допустим, что частоты колебаний и фазы одинаковы, а амплитуды pазличны.

(4.49)
Чтобы найти тpаектоpию pезультиpующего движения, нужно из уpавнений (4.49) исключить вpемя. Для этого достаточно поделить почленно одно уpавнение на другое, в pезультате чего получим

(4.50)
Уpавнение (4.50) показывает, что в данном случае сложение колебаний пpиводит к колебанию по пpямой линии, тангенс угла наклона котоpой опpеделяется отношением амплитуд.
2. Пусть фазы складываемых колебаний отличаются дpуг от дpуга на /2 и уpавнения имеют вид:

(4.51)
Чтобы найти тpаектоpию pезультиpующего движения, исключив вpемя, нужно уpавнения (4.51) возвести в квадpат, пpедваpительно поделив их на А1 и А2 соответственно, а затем сложить. Уpавнение тpаектоpии пpимет вид:

(4.52)
Это - уpавнение эллипса. Можно доказать, что и пpи любых начальных фазах и любых амплитудах двух складываемых взаимно пеpпендикуляpных колебаний одинаковой частоты pезультиpующее колебание будет осуществляться по эллипсу. Его оpиентация будет зависеть от фаз и амплитуд складываемых колебаний.
Если же складываемые колебания имеют pазличные частоты, то тpаектоpии pезультиpующих движений получаются весьма pазнообpазными. Только в случае если частоты колебаний по х и по y кpатны дpуг дpугу, получаются замкнутые тpаектоpии. Такие движения можно отнести к числу пеpиодических. В этом случае тpаектоpии движений называются фигуpами Лиссажу. Рассмотpим одну из фигуp Лиссажу, котоpая получается пpи сложении колебаний с отношениями частот 1:2, с одинаковыми амплитудами и фазами в начале движения.

(4.53)
Вдоль оси y колебания пpоисходят в два pаза чаще, чем вдоль оси х. Сложение таких колебаний пpиведет к траектоpии движения в виде восьмеpки (pис.4.7).

8. Затухающие колебания и их параметры: декремент и коэффициент колебания, время релаксации

)Период затухающих колебаний :

Т = (58)

При δ << ω o колебания не отличаются от гармонческих: Т = 2π / ω o .

2) Амплитуда затухающих колебаний выражается формулой (119).

3) Декремент затухания, равный отношению двух последовательных амплитуд колебаний А (t ) и А (t+Т ), характеризует быстроту уменьшения амплитуды за период:

= e d Т (59)

4) Логарифмический декремент затухания - натуральныйлогарифм отношения амплитуд двух последовательных колебаний, соответст­вующих моментам времени, отличающимся на период

q = ln = ln e d Т =dT (60)

Логарифмический декремент затухания - по­стоянная для данной колебательной системы величина.

5) Временем релаксации принято называть промежуток времени (t ) в течение которого амплитуда затухающих колебаний уменьшается в е раз:

e d τ = е , δτ = 1,

t = 1/d , (61)

Из сравнения выражений (60) и (61) получим:

q = = , (62)

где N e - число колебаний, совершаемых за время релаксации.

В случае если за время t система совершает Ν колебаний, то t = Ν . Τ и уравнение затухающих колебаний можно представить в виде:

S = A 0 e -d N T cos (w t+j )= A 0 e -q N cos (w t+j ).

6)Добротностью колебательной системы (Q ) принято называть величина, характеризующая потерю энергии в системе за период колебаний:

Q = 2p , (63)

где W - полная энергия системы, ΔW - энергия, рассеянная за период. Чем меньше энергии рассеивается, тем больше добротность системы. Расчеты показывают, что

Q = = pN e = = . (64)

Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, добротность обратно пропорциональна логарифмическому декременту затухания. Из формулы (64) следует, что добротность пропорциональна числу колебаний N e , совершаемых системой за время релаксации.

7) Потенциальную энергию системы в момент t, можно выразить через потенциальную энергию W 0 при наибольшем отклонении:

W = = kA o 2 e -2 qN = W 0 e -2 qN . (65)

Обычно условно считают, что колебания практически прекратились, в случае если их энергия уменьшилась в 100 раз (амплитуда уменьшилась в 10 раз). Отсюда можно получить выражение для расчета числа колебаний, совершенных системой:

= e 2qN = 100, ln100 = 2qN ;

N = = . (66)

9. Вынужденные колебания. Резонанс. Апериодические колебания. Автоколебания.

Для того чтобы система совершала незатухающие колебания, необходимо извне восполнять потери энергии колебаний на трение. Для того, чтобы энергия колебаний системы не убывала обычно вводят силу, периодически воздействующую на систему (такую силу будем называть вынуждающей , а колебания вынужденными).

ОПРЕДЕЛЕНИЕ: вынужденными называются такие колебания, которые возникают в колебательной системе под действием внешней периодически изменяющейся силы.

Эта сила, как правило, выполняет двоякую роль:

во-первых, она раскачивает систему и сообщает ей определенный запас энергии;

во-вторых, она периодически восполняет потери энергии (расход энергии) на преодоление сил сопротивления и трения.

Пусть вынуждающая сила изменяется со временем по закону:

.

Составим уравнение движения для системы, колеблющейся под воздействием такой силы. Предполагаем, что на систему также действует квазиупругая сила и сила сопротивления среды (что справедливо в предположении малости колебаний). Тогда уравнение движения системы будет иметь вид:

Или .

Проведя подстановки , , – собственная частота колебаний системы, получим неоднородное линейной дифференциальное уравнение 2 го порядка:

Из теории дифференциальных уравнений известно, что общее решение неоднородного уравнения равно сумме общего решения однородного уравнения и частного решения неоднородного уравнения.

Общее решение однородного уравнения известно:

,

где ; a 0 и a – произвольные const.

.

С помощью векторной диаграммы можно убедиться, что такое предположение справедливо, а также определить значения “a ” и “j ”.

Амплитуда колебаний определяется следующим выражением:

.

Значение “j ”, которое представляет собой величину отставания по фазе вынужденного колебания от обусловившей его вынуждающей силы , также определяется из векторной диаграммы и составляет:

.

Окончательно, частное решение неоднородного уравнения примет вид:


(8.18)

Эта функция в сумме с

(8.19)

дает общее решение неоднородного дифференциального уравнения, описывающего поведение системы при вынужденных колебаниях. Слагаемое (8.19) играет заметную роль в начальной стадии процесса, при так называемом установлении колебаний (рис. 8.10). С течением времени из-за экспоненциального множителя роль второго слагаемого (8.19) все больше уменьшается, и по прошествии достаточного времени им можно пренебречь, сохраняя в решении лишь слагаемое (8.18).

Таким образом, функция (8.18) описывает установившиеся вынужденные колебания. Они представляют собой гармонические колебания с частотой равной частоте вынуждающей силы. Амплитуда вынужденных колебаний пропорциональна амплитуде вынуждающей силы. Для данной колебательной системы (определенных w 0 и b) амплитуда зависит от частоты вынуждающей силы. Вынужденные колебания отстают по фазе от вынуждающей силы, причем величина отставания “j” также зависит от частоты вынуждающей силы.

Зависимость амплитуды вынужденных колебаний от частоты вынуждающей силы приводит к тому, что при некоторой определенной для данной системы частоте амплитуда колебаний достигает максимального значения. Колебательная система оказывается особенно отзывчивой на действие вынуждающей силы при этой частоте. Это явление называется резонансом , а соответствующая частота – резонансной частотой .

ОПРЕДЕЛЕНИЕ: явление, при котором наблюдается резкое возрастание амплитуды вынужденных колебаний, называется резонансом .

Резонансная частота определяется из условия максимума для амплитуды вынужденных колебаний:

. (8.20)

Тогда, подставив это значение в выражение для амплитуды, получим:

. (8.21)

При отсутствии сопротивления среды амплитуда колебаний при резонансе обращалась бы в бесконечность; резонансная частота при тех же условиях (b=0) совпадает с собственной частотой колебаний.

Зависимость амплитуды вынужденных колебаний от частоты вынуждающей силы (или, что то же самое, от частоты колебаний) можно представить графически (рис. 8.11). Отдельные кривые соответствуют различным значениям “b”. Чем меньше “b”, тем выше и правее лежит максимум данной кривой (см. выражение для w рез.). При очень большом затухании резонанс не наблюдается – с увеличением частоты амплитуда вынужденных колебаний монотонно убывает (нижняя кривая на рис. 8.11).

Совокупность представленных графиков, соответствующих различным значениям b, называется резонансными кривыми .

Замечания по поводу резонансных кривых:

при стремлении w®0 все кривые приходят к одному, отличному от нуля значению, равному . Это значение представляет собой смещение из положения равновесия, которое получает система под действием постоянной силы F 0 .

при w®¥ все кривые асимптотически стремятся к нулю, т.к. при большой частоте сила так быстро изменяет свое направление, что система не успевает заметно сместится из положения равновесия.

чем меньше b, тем сильнее изменяется с частотой амплитуда вблизи резонанса, тем «острее» максимум.

Явление резонанса часто оказывается полезным, особенно в акустике и радиотехнике.

Автоколеба́ния - незатухающие колебания в диссипативной динамической системе с нелинейной обратной связью, поддерживающиеся за счёт энергии постоянного, то есть непериодического внешнего воздействия.

Автоколебания отличаются от вынужденных колебаний тем, что последние вызваны периодическим внешним воздействием и происходят с частотой этого воздействия, в то время как возникновение автоколебаний и их частота определяются внутренними свойствами самой автоколебательной системы.

Термин автоколебания в русскоязычную терминологию введён А. А. Андроновым в 1928 году.

Примеры[

Примерами автоколебаний могут служить:

· незатухающие колебания маятника часов за счёт постоянного действия тяжести заводной гири;

· колебания скрипичной струны под воздействием равномерно движущегося смычка

· возникновение переменного тока в цепях мультивибратора и в других электронных генераторах при постоянном напряжении питания;

· колебание воздушного столба в трубе орга́на, при равномерной подаче воздуха в неё. (см. также Стоячая волна)

· вращательные колебания латунной часовой шестерёнки со стальной осью, подвешенной к магниту и закрученной (опыт Гамазкова) (кинетическая энергия колеса, как в униполярном генераторе преобразуется в потенциальную энергию электрического поля, потенциальная энергия электрического поля, как в униполярном двигателе, преобразуется в кинетическую энергию колеса и т. д.)

Молоток Маклакова

Молоток, совершающий удары за счёт энергии переменного тока с частотой, во много раз меньшей частоты тока в электрической цепи .

Катушка L колебательного контура помещается над столом (или другим предметом, по которому требуется ударять). Снизу в неё входит железная трубка, нижний конец которой является ударной частью молотка. В трубке есть вертикальная прорезь, чтобы уменьшить токи Фуко. Параметры колебательного контура такие, что собственная частота его колебаний совпадает с частотой тока в цепи (например, переменного городского тока, 50 герц).

После включения тока и установления колебаний наблюдается резонанс токов контура и внешней цепи, и железная трубка втягивается в катушку. Индуктивность катушки растёт, колебательный контур выходит из резонанса, а амплитуда колебаний тока в катушке уменьшается. Поэтому трубка возвращается в исходное положение - вне катушки - под действием силы тяжести. Затем колебания тока внутри контура начинают нарастать, и снова наступает резонанс: трубка опять втягивается в катушку.

Трубка совершает автоколебания , то есть периодические движения вверх и вниз, и при этом громко стучит по столу, подобно молотку. Период этих механических автоколебаний в десятки раз превосходит период переменного тока, поддерживающего их.

Молоток назван по имени М. И. Маклакова, лекционного ассистента Московского физико-технического института, предложившего и осуществившего такой опыт для демонстрации автоколебаний.

Механизм автоколебаний

Рис 1. Механизм автоколебаний

Автоколебания могут иметь различную природу: механическую, тепловую, электромагнитную, химическую. Механизм возникновения и поддержания автоколебаний в разных системах может основываться на разных законах физики или химии. Для точного количественного описания автоколебаний разных систем может потребоваться разный математический аппарат. Тем не менее, можно представить схему, общую для всех автоколебательных систем, качественно описывающую этот механизм (рис. 1).

На схеме: S - источник постоянного (непериодического) воздействия; R - нелинейный регулятор, преобразующий постоянное воздействие в переменное (например, в прерывистое во времени), которое и «раскачивает» осциллятор V - колеблющийся элемент (элементы) системы, а колебания осциллятора через обратную связь B управляют работой регулятора R , задавая фазу и частоту его действия. Диссипация (рассеивание энергии) в автоколебательной системе возмещается за счёт поступления в неё энергии из источника постоянного воздействия, благодаря чему автоколебания не затухают.

Рис. 2 Схема храпового механизма маятниковых часов

Если колеблющийся элемент системы способен к собственным затухающим колебаниям (т. н. гармонический диссипативный осциллятор ), автоколебания (при равенстве диссипации и поступления энергии в систему за время периода) устанавливаются на частоте, близкой к резонансной для этого осциллятора, их форма становится близкой к гармонической, а амплитуда, в некотором диапазоне значений, тем больше, чем больше величина постоянного внешнего воздействия.

Примером такого рода системы может служить храповой механизм маятниковых часов, схема которого представлена на рис. 2. На ось храпового колеса A (которое в этой системе выполняет функцию нелинейного регулятора) действует постоянный момент силы M , передающийся через зубчатую передачу от заводной пружины или от гири. При вращении колеса A его зубцы сообщают кратковременные импульсы силы маятнику P (осциллятору), благодаря которым его колебания не затухают. Кинематика механизма играет роль обратной связи в системе, синхронизируя вращение колеса с колебаниями маятника таким образом, что за полный период колебания колесо поворачивается на угол, соответствующий одному зубцу.

Автоколебательные системы, не содержащие гармонических осцилляторов, называются релаксационными . Колебания в них могут сильно отличаться от гармонических, и иметь прямоугольную, треугольную или трапецеидальную форму. Амплитуда и период релаксационных автоколебаний определяются соотношением величины постоянного воздействия и характеристик инерционности и диссипации системы.

Рис. 3 Электрозвонок

Простейшим примером релаксационных автоколебаний может служить работа электрического звонка, изображённого на рис. 3. Источником постоянного (непериодического) воздействия здесь является электрическая батарея U ; роль нелинейного регулятора выполняет прерыватель T , замыкающий и размыкающий электрическую цепь, в результате чего в ней возникает прерывистый ток; колеблющимися элементами являются магнитное поле, периодически наводимое в сердечнике электромагнита E , и якорь A , движущийся под воздействием переменного магнитного поля. Колебания якоря приводят в действие прерыватель, что и образует обратную связь.

Инерционность этой системы определяется двумя различными физическими величинами: моментом инерции якоря А и индуктивностью обмотки электромагнита E . Увеличение любого из этих параметров приводит к увеличению периода автоколебаний.

При наличии в системе нескольких элементов, колеблющихся независимо друг от друга, и одновременно воздействующих на нелинейный регулятор или регуляторы (которых тоже может быть несколько), автоколебания могут принимать более сложный характер, например, апериодический , или динамический хаос .

В природе и технике

Автоколебания лежат в основе многих явлений природы:

· колебания листьев растений под действием равномерного потока воздуха;

· образование турбулентных потоков на перекатах и порогах рек;

· действие регулярных гейзеров и пр.

На автоколебаниях основан принцип действия большого количества всевозможных технических устройств и приспособлений, в том числе:

· работа всевозможных часов, как механических, так и электрических;

· звучание всех духовых и струнно-смычковых музыкальных инструментов;


©2015-2019 сайт
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2017-04-04

Колебательное движение - периодическое или почти периодическое движение тела, координата, скорость и ускорение которого через равные промежутки времени принимают примерно одинаковые значения.

Механические колебания возникают тогда, когда при выводе тела из положения равновесия появляется сила, стремящаяся вернуть тело обратно.

Смещение х - отклонение тела от положения равновесия.

Амплитуда А - модуль максимального смещения тела.

Период колебания Т - время одного колебания:

Частота колебания

Число колебаний, совершаемых телом за единицу времени: При колебаниях скорость и ускорение периодически изменяются. В положении равновесия скорость максимальна, ускорение равно нулю. В точках максимального смещения ускорение достигает максимума, скорость обращается в нуль.

ГРАФИК ГАРМОНИЧЕСКИХ КОЛЕБАНИЙ

Гармоническими называются колебания, происходящие по закону синуса или косинуса:

где x(t) - смещение системы в момент t, A - амплитуда, ω - циклическая частота колебаний.

Если по вертикальной оси откладывать отклонение тела от положения равновесия, а по горизонтальной - время, то получится график колебания х = x(t) - зависимость смещения тела от времени. При свободных гармонических колебаниях - это синусоида или косинусоида. На рисунке представлены графики зависимости смещения х, проекций скорости V х и ускорения а х от времени.

Как видно из графиков, при максимальном смещении х скорость V колеблющегося тела равна нулю, ускорение а, а значит и действующая на тело сила, максимальны и направлены противоположно смещению. В положении равновесия смещение и ускорение обращаются в нуль, скорость максимальна. Проекция ускорения всегда имеет знак, противоположный смещению.

ЭНЕРГИЯ КОЛЕБАТЕЛЬНОГО ДВИЖЕНИЯ

Полная механическая энергия колеблющегося тела равна сумме его кинетической и потенциальной энергий и при отсутствии трения остается постоянной:

В момент, когда смещение достигает максимума х = А, скорость, а вместе с ней и кинетическая энергия, обращаются в нуль.

При этом полная энергия равна потенциальной энергии:

Полная механическая энергия колеблющегося тела пропорциональна квадрату амплитуды его колебаний.

Когда система проходит положение равновесия, смещение и потенциальная энергия равны нулю: х = 0, Е п = 0. Поэтому полная энергия равна кинетической:

Полная механическая энергия колеблющегося тела пропорциональна квадрату его скорости в положении равновесия. Следовательно:

МАТЕМАТИЧЕСКИЙ МАЯТНИК

1. Математический маятник - это материальная точка, подвешенная на невесомой нерастяжимой нити.

В положении равновесия сила тяжести компенсируется силой натяжения нити. Если маятник отклонить и отпустить, то силы и перестанут компенсировать друг друга, и возникнет результирующая сила , направленная к положению равновесия. Второй закон Ньютона:

При малых колебаниях, когда смещение х много меньше l, материальная точка будет двигаться практически вдоль горизонтальной оси х. Тогда из треугольника МАВ получаем:

Так как sin a = х/l , то проекция результирующей силы R на ось х равна

Знак "минус" показывает, что сила R всегда направлена против смещения х.

2. Итак, при колебаниях математического маятника, так же как и при колебаниях пружинного маятника, возвращающая сила пропорциональна смещению и направлена в противоположную сторону.

Сравним выражения для возвращающей силы математического и пружинного маятников:

Видно, что mg/l является аналогом k. Заменяя, k на mg/l в формуле для периода пружинного маятника

получаем формулу для периода математического маятника:

Период малых колебаний математического маятника не зависит от амплитуды.

Математический маятник используют для измерения времени, определения ускорения свободного падения в данном месте земной поверхности.

Свободные колебания математического маятника при малых углах отклонения являются гармоническими. Они происходят благодаря равнодействующей силы тяжести и силы натяжения нити, а также инерции груза. Равнодействующая этих сил является возвращающей силой.

Пример. Определите ускорение свободного падения на планете, где маятник длиной 6,25 м имеет период свободных колебаний 3,14 с.

Период колебаний математического маятника зависит от длины нити и ускорения свободного падения:

Возведя обе части равенства в квадрат, получаем:

Ответ: ускорение свободного падения равно 25 м/с 2 .

Задачи и тесты по теме "Тема 4. "Механика. Колебания и волны"."

  • Поперечные и продольные волны. Длина волны

    Уроков: 3 Заданий: 9 Тестов: 1

  • Звуковые волны. Скорость звука - Механические колебания и волны. Звук 9 класс

ГАРМОНИЧЕСКОЕ КОЛЕБАТЕЛЬНОЕ ДВИЖЕНИЕ

§1 Кинематика гармонического колебания

Процессы, повторяющиеся во времени называются колебаниями.

В зависимости от природы колебательного процесса и механизма возбуждения бывают: механические колебания (колебания маятников, струн, зданий, земной поверхности и т.д.); электромагнитные колебания (колебания переменного тока, колебания векторов и в электромагнитной волне и т.д.); электромеханические колебания (колебания мембраны телефона, диффузора громкоговорителя и др.); колебания ядер и молекул в результате теплового движения в атомах.

Рассмотрим отрезок [ОД] (радиус-вектор), совершающий вращательное движение вокруг точки 0. Длина |ОД| = A . Вращение происходит с постоянной угловой скоростью ω 0 . Тогда угол φ между радиус-вектором и осью x меняется со временем по закону

где φ 0 - угол между [ОД] и осью х в момент времени t = 0. Проекция отрезка [ОД] на ось х в момент времени t = 0

а в произвольный момент времени

(1)

Таким образом, проекция отрезка [ОД] на ось х совершает колебания, происходящие вдоль оси х , и эти колебания описываются законом косинуса (формула (1)).

Колебания, которые описываются законом косинуса

или синуса

называется гармоническими .

Гармонические колебания являются периодическими , т.к. значение величины х (и у) повторяется через равные промежутки времени.

Если отрезок [ОД] находится з низшем положении по рисунку, т.е. точка Д совпадает с точкой Р , то его проекция на ось х равна нулю. Назовем такое положение отрезка [ОД] положением равновесия. Тогда можно сказать, что величина х описывает смещение колеблющейся точки из положения равновесия. Максимальное смещение от положения равновесия называется амплитудой колебания

Величина

которая стоит под знаком косинуса называется фазой. Фаза определяет смещение от положения равновесия в произвольный момент времени t . Фаза в начальный момент времени t = 0 , равная φ 0 называется начальной фазой.

Т

Промежуток времени, за который совершается одно полное колебание, называется периодом колебаний Т . Число колебаний в единицу времени называется частотой колебаний ν.

Через промежуток времени, равный периоду Т , т.е. при увеличении аргумента косинуса на ω 0 Т , движение повторяется, и косинус принимает прежнее значение

т.к. период косинуса равен 2π , то, следовательно, ω 0 Т = 2π

таким образом, ω 0 - это число колебаний тела за 2π секунд. ω 0 - циклическая или круговая частота .

рисунок гармонического колебания

А - амплитуда, Т - период, х - смещение, t - время.

Скорость колеблющейся точки найдем, продифференцировав уравне-ние смещения х (t ) по времени

т.е. скорость v отличается по фазе от смещения х на π /2.

Ускорение - первая производная от скорости (вторая производная от смещения) по времени

т.е. ускорение а отличается от смещения по фазе на π.


Построим график х( t ) , у( t ) и а( t ) в одной смете координат (для простоты примем φ 0 = 0 и ω 0 = 1)

Свободными или собственными называются колебания, которые происходят в системе предоставленной самой себе после того, как она была выведена из положения равновесия.

Колебания - повторяющийся в той или иной степени во времени процесс изменения состояний системы около точки равновесия.

Гармоническое колебание - колебания, при которых физическая (или любая другая) величина изменяется с течением времени по синусоидальному или косинусоидальному закону. Кинематическое уравнение гармонических колебаний имеет вид

где х - смещение (отклонение) колеблющейся точки от положения равновесия в момент времени t; А - амплитуда колебаний, это величина, определяющая максимальное отклонение колеблющейся точки от положения равновесия; ω - циклическая частота, величина, показывающая число полных колебаний происходящих в течение 2π секунд - полная фаза колебаний, 0- начальная фаза колебаний.

Амплитуда - максимальное значение смещения или изменения переменной величины от среднего значения при колебательном или волновом движении.

Амплитуда и начальная фаза колебаний определяется начальными условиями движения, т.е. положением и скоростью материальной точки в момент t=0.

Обобщенное гармоническое колебание в дифференциальном виде

амплитуда звуковых волн и аудиосигналов обычно относится к амплитуде давления воздуха в волне, но иногда описывается как амплитуда смещения относительно равновесия (воздуха или диафрагмы говорящего)

Чaстота - физическая величина, характеристика периодического процесса, равная числу полных циклов процесса, совершённых за единицу времени. Частота колебаний в звуковых волнах определяется частотой колебаний источника. Колебания высокой частоты затухают быстрее низкочастотных.

Величина, обратная частоте колебаний называется периодом Т.

Период колебаний- длительность одного полного цикла колебаний.

В системе координат из точки 0 проведём вектор А̅, проекция которого на ось ОХ равна Аcosϕ. Если вектор А̅ будет равномерно вращаться с угловой скоростью ω˳ против часовой стрелки, то ϕ=ω˳t +ϕ˳, где ϕ˳ начальное значение ϕ(фазы колебаний), то амплитуда колебаний есть модуль равномерно вращающегося вектора А̅, фаза колебаний (ϕ)- угол между вектором А̅ и осью ОХ, начальная фаза(ϕ˳) -начальное значение этого угла, угловая частота колебаний(ω) – угловая скорость вращения вектора А̅..

2. Характеристики волновых процессов: фронт волны, луч, скорость волны, длина волны . Продольные и поперечные волны; примеры.

Поверхность, разделяющая в данный момент времени уже охваченную и ещё не охваченную колебаниями среду,называется фронт волны. Во всех точках такой поверхности после ухода фронта волны устанавливаются колебания,одинаковые по фазе.


Луч-это перпендикуляр к фронту волны. Акустические лучи, подобно световым, прямолинейны в однородной среде. Отражаются и преломляются на границе раздела 2-х сред.

Длина волны- расстояние между двумя ближайшими друг к другу точками, колеблющимися в одинаковых фазах, обычно длина волны обозначается греческой буквой . По аналогии с волнами, возникающими в воде от брошенного камня, длиной волны является расстояние между двумя соседними гребнями волны. Одна из основных характеристик колебаний. Измеряется в единицах расстояния (метры, сантиметры и т. п.)

  • продольные волны (волны сжатия, P-волны) - частицы среды колеблются параллельно (по) направлению распространения волны (как, например, в случае распространения звука);
  • поперечные волны (волны сдвига, S-волны) - частицы среды колеблются перпендикулярно направлению распространения волны (электромагнитные волны, волны на поверхностях разделения сред);

Угловая частота колебаний(ω) – угловая скорость вращения вектора А̅(Ѵ), смещение х колеблющейся точки – проекция вектора А̅ на ось ОХ.

Ѵ=dx/dt=-Aω˳sin(ω˳t+ϕ˳)=-Ѵmsin(ω˳t+ϕ˳),гдеVm=Аω˳ ―максимальная скорость (амплитуда скорости)

3. Свободные и вынужденные колебания. Собственная частота колебаний системы. Явление резонанса. Примеры.

Свободными (собственными) колебаниями называют такие, которые совершаются без внешних воздействий за счет первоначально полученной теплом энергии. Характерными моделями таких механических колебаний являются материальная точка на пружине (пружинный маятник) и материальная точка на нерастяжимой нити (математический маятник).

В этих примерах колебания возникают либо за счет первоначальной энергии (отклонение материальной точки от положения равновесия и движения без начальной скорости), либо за счет кинетической (телу сообщается скорость в начальном положении равновесия), либо за счет и той и другой энергии (сообщение скорости телу, отклоненному от положения равновесия).

Рассмотрим пружинный маятник. В положении равновесия упругая сила F1

уравновешивает силу тяжести mg . Если оттянуть пружину на расстояние x, то на материальную точку будет действовать большая упругая сила. Изменение значения упругой силы (F), согласно закону Гука, пропорционально изменению длины пружины или смещению x точки: F= - rx

Другой пример. Математический маятник отклонения от положения равновесия га такой небольшой угол α , чтобы можно было считать траекторию движения материальной точки прямой линией, совпадающей с осью OX. При этом выполняется приближенное равенство: α ≈sin α≈ tgα ≈x/L

Незатухающие колебания. Рассмотрим модель, в которой пренебрегают силой сопротивления.
Амплитуда и начальная фаза колебаний определяются начальными условиями движения, т.е. положением и скоростью материальной точки момент t=0.
Среди различных видов колебаний гармоническое колебание является наиболее простой формой.

Таким образом, материальная точка, подвешенная на пружине или нити, совершает гармонические колебания, если не учитывать силы сопротивления.

Период колебаний может быть найден из формулы: T=1/v=2П/ω0

Затухающие колебания. В реальном случае на колеблющееся тело действуют силы сопротивления (трения), характер движения изменяется, и колебание становится затухающим.

Применительно к одномерному движению последней формуле придадим следующий вид: Fс= - r * dx/dt

Быстрота убывания амплитуды колебаний определяется коэффициентом затухания: чем сильнее тормозящее действие среды, тем больше ß и тем быстрее уменьшается амплитуда. На практически, однако, степень затухания часто характеризуются логарифмическим декрементом затухания, понимая под эти величину, равную натуральному логарифму отношения двух последовательных амплитуд, разделенных интервалом времени, равным периоду колебаний следовательно, коэффициент затухания и логарифмический декремент затухания связаны достаточно простой зависимостью: λ=ßT

При сильном затухании из формулы видно, что период колебания является мнимой величиной. Движение в этом случае уже не будет периодическим и называется апериодическим.

Вынужденные колебания. Вынужденными колебаниями называются колебания, возникающие в системе при участии внешней силы, изменяющейся по периодическому закону.

Предположим, что на материальную точку, кроме упругой силы и силы трения, действует внешняя вынуждающая сила F=F0 cos ωt

Амплитуда вынужденного колебания прямо пропорциональна амплитуде вынуждающей силы и имеет сложную зависимость от коэффициента затухания среды и круговых частот собственного и вынужденного колебаний. Если ω0 и ß для системы заданы, то амплитуда вынужденных колебаний имеет максимальное значение при некоторой определенной частоте вынуждающей силы, называемой резонансной Само явление – достижение максимальной амплитуды вынужденных колебаний для заданных ω0 и ß – называют резонансом.

Резонансную круговую частоту можно найти из условия минимума знаменателя в: ωрез=√ωₒ- 2ß

Механический резонанс сожжет быть как полезным, так и вредным явлением. Вредное действие связано главным образом с разрушение, которое он может вызывать. Так, в технике, учитывая разные вибрации, необходимо предусматривать возможное возникновение резонансных условий, в противном случае могут быть разрушения и катастрофы. Тела обычно имеют несколько собственных частот колебаний и соответственно несколько резонансных частот.

Резонансные явления при действии внешних механических колебаний происходят во внутренних органах. В этом, видимо, одна из причин отрицательного воздействия инфразвуковых колебаний и вибраций на организм человека.

6.Звуковые методы исследования в медицине: перкуссия, аускультация. Фонокардиография.

Звук может быть источником информации о состоянии внутренних органов человека, поэтому в медицине хорошо распространены такие методы изучения состояния пациента, как аускультация, перкуссия и фонокардиография

Аускультация

Для аускультация используют стетоскоп или фонендоскоп. Фонендоскоп состоит из полой капсулы с передающей звук мембраной, прикладываемой к телу больного, от нее идут резиновые трубки к уху врача. В капсуле возникает резонанс столба воздуха, вследствие чего усиливается звучание и улучшается аускультация. При аускультации легких выслушивают дыхательные шумы, разные хрипы, характерные для заболеваний. Также можно прослушивать сердце, кишечник и желудок.

Перкуссия

В этом методе выслушивают звучание отдельных частей тела при простукивании их. Представим замкнутую полость внутри какого-нибудь тела, заполненную воздухом. Если вызвать в этом теле звуковые колебания, то при определенной частоте звука воздух в полости начнет резонировать, выделяя и усиливая тон,соответствующий размеру и положению полости. Тело человека можно представить как совокупность газонаполненных(легкие) , жидких(внутренние органы) и твердых(кости) объемов. При ударе по поверхности тела возникают колебания, частоты которых имеют широкий диапазон. Из этого диапазона одни колебания погаснут довольно быстро, другие же, совпадающие с собственными колебаниями пустот, усилятся и вследствие резонанса будут слышимы.

Фонокардиография

Применяется для диагностики состояния сердечной деятельности. Метод заключается в графической регистрации тонов и шумов сердца и их диагностической интерпретации. Фонокардиограф состоит из микрофона, усилителя, системы частотных фильтров и регистрирующего устройства.

9. Ультразвуковые методы исследования (УЗИ) в медицинской диагностике.

1) Методы диагностики и исследования

Относят локационные методы с использованием главным образом импульсивного излучения. Это эхоэнцефалография – определение опухолей и отека головного мозга. Ультразвуковая кардиография – измерение размеров сердца в динамике; в офтальмологии – ультразвуковая локация для определения размеров глазных сред.

2)Методы воздействия

Ультразвуковая физиотерапия – механическое и тепловое воздействие на ткань.

11. Ударная волна. Получение и использование ударных волн в медицине.
Ударная волна – поверхность разрыва, которая движется относительно газа и при пересечении которой давление, плотность, температура и скорость испытывают скачок.
При больших возмущениях (взрыв, сверхзвуковое движение тел, мощный электрический разряд и т.п.) скорость колеблющихся частиц среды может стать сравнимой со скоростью звука, возникает ударнаяволна .

Ударная волна может обладать значительной энергией , так, при ядерном взрыве на образование ударной волны в окружающей среде затрачивается около 50% энергии взрыва. Поэтому ударная волна, достигая биологических и технических объектов, способна причинить смерть, увечья и разрушения.

В медицинской технике используются ударные волны , представляющие собой чрезвычайно короткий, мощный импульс давления с высокими амплитудами давления и малой компонентой растяжения. Они генерируются вне тела пациента и передаются вглубь тела, производя терапевтический эффект, предусмотренный специализацией модели оборудования: дробление мочевых камней, лечение болевых зон и последствий травм опорно-двигательного аппарата, стимуляцию восстановления сердечной мышцы после инфаркта миокарда, разглаживание целлюлитных образований и т. д.

Гармонические колебания – колебания, совершаемые по законам синуса и косинуса. На следующем рисунке представлен график изменения координаты точки с течением времени по закону косинуса.

картинка

Амплитуда колебаний

Амплитудой гармонического колебания называется наибольшее значение смещения тела от положения равновесия. Амплитуда может принимать различные значения. Она будет зависеть от того, насколько мы сместим тело в начальный момент времени от положения равновесия.

Амплитуда определяется начальными условиями, то есть энергией сообщаемой телу в начальный момент времени. Так как синус и косинус могут принимать значения в диапазоне от -1 до 1, то в уравнении должен присутствовать множитель Xm, выражающий амплитуду колебаний. Уравнение движения при гармонических колебаниях:

x = Xm*cos(ω0*t).

Период колебаний

Период колебаний – это время совершения одного полного колебания. Период колебания обозначается буквой Т. Единицы измерения периода соответствуют единицам времени. То есть в СИ - это секунды.

Частота колебаний – количество колебаний совершенных в единицу времени. Частота колебаний обозначается буквой ν. Частоту колебаний можно выразить через период колебания.

ν = 1/Т.

Единицы измерения частоты в СИ 1/сек. Эта единица измерения получила название Герца. Число колебаний за время 2*pi секунд будет равняться:

ω0 = 2*pi* ν = 2*pi/T.

Частота колебаний

Данная величина называется циклической частотой колебаний. В некоторой литературе встречается название круговая частота. Собственная частота колебательной системы – частота свободных колебаний.

Частота собственных колебаний рассчитывается по формуле:

Частота собственных колебаний зависит от свойств материала и массы груза. Чем больше жесткость пружины, тем больше частота собственных колебаний. Чем больше масса груза, тем меньше частота собственных колебаний.

Эти два вывода очевидны. Чем более жесткая пружина, тем большее ускорение она сообщит телу, при выведении системы из равновесия. Чем больше масса тела, тем медленнее будет изменяться это скорость этого тела.

Период свободных колебаний :

T = 2*pi/ ω0 = 2*pi*√(m/k)

Примечателен тот факт, что при малых углах отклонения период колебания тела на пружине и период колебания маятника не будут зависеть от амплитуды колебаний.

Запишем формулы периода и частоты свободных колебаний для математического маятника.

тогда период будет равен

T = 2*pi*√(l/g).

Данная формула будет справедлива лишь для малых углов отклонения. Из формулы видим, что период колебаний возрастает с увеличением длины нити маятника. Чем больше будет длина, тем медленнее тело будет колебаться.

От массы груза период колебаний совершенно не зависит. Зато зависит от ускорения свободного падения. При уменьшении g, период колебаний будет увеличиваться. Данное свойство широко используют на практике. Например, для измерения точного значения свободного ускорения.