Химические свойства кислых и основных солей. Гидроксиды: щелочи, амфотерные и нерастворимые основания. Электролиз водных растворов солей с диафрагмой

  • 20.09.2019

Соли-продукт замещения атомов водорода в кислоте на металл. Растворимые соли в соде диссоцируют на катион металла и анион кислотного остатка. Соли делят на:

· Средние

· Основные

· Комплексные

· Двойные

· Смешанные

Средние соли. Это продукты полного замещения атомов водорода в кислоте на атомы металла, или на группу атомов (NH 4 +): MgSO 4 ,Na 2 SO 4 ,NH 4 Cl, Al 2 (SO 4) 3 .

Названия средних солей происходят от названия металлов и кислот:CuSO 4 -сульфат меди,Na 3 PO 4 -фосфат натрия,NaNO 2 -нитрит натрия,NaClO-гипохлорит натрия,NaClO 2 -хлорит натрия,NaClO 3 -хлорат натрия,NaClO 4 -перхлорат натрия,CuI- йодид меди(I), CaF 2 -фторид кальция. Так же надо запомнить несколько тривиальных названий: NaCl-поваренная соль, KNO3-калийная селитра, K2CO3-поташ, Na2CO3-сода кальцинированная,Na2CO3∙10H2O-сода кристаллическая, CuSO4- медный купорос,Na 2 B 4 O 7 . 10H 2 O- бура,Na 2 SO 4 . 10H 2 O-глауберова соль.Двойные соли. Это соли, содержащие два типа катионов (атомы водорода многоосновной кислоты замещены двумя различными катионами): MgNH 4 PO 4 , KAl (SO 4 ) 2 , NaKSO 4 .Двойные соли как индивидуальные соединения существуют только в кристаллическом виде. При растворении в воде они полностью диссоциируютна ионы металлов и кислотные остатки (если соли растворимые), например:

NaKSO 4 ↔ Na + + K + + SO 4 2-

Примечательно, что диссоциация двойных солей в водных растворах проходит в 1 ступень. Для названия солей данного типа нужно знать названия аниона и двух катионов: MgNH 4 PO 4 - фосфат магния-аммония.

Комплексные соли. Это частицы (нейтральные молекулы или ионы), которые образуются в результате присоединения к данному иону(или атому), называемомукомплексообразователем , нейтральных молекул или других ионов, называемых лигандами . Комплексные соли делятся на:

1) Катионные комплексы

Cl 2 - дихлоридтетраамминцинка(II)
Cl 2 - ди хлоридгексаамминкобальта(II)

2) Анионные комплексы

K 2 - тетрафторобериллат(II) калия
Li -
тетрагидридоалюминат(III) лития
K 3 -
гексацианоферрат(III) калия

Теорию строения комплексных соединений разработал швейцарский химик А. Вернер.

Кислые соли – продукты неполного замещения атомов водорода в многоосновных кислотах на катионы металла.

Например: NaHCO 3

Химические свойства:
Реагируют с металлами, стоящими в ряду напряжений левее водорода .
2KHSO 4 +Mg→H 2 +Mg(SO) 4 +K 2 (SO) 4

Заметим, что для таких реакций опасно брать щелочные металлы, ибо они вначале прореагируют с водой с большим выделением энергии, и произойдёт взрыв, так как все реакции происходят в растворах.

2NaHCO 3 +Fe→H 2 +Na 2 CO 3 +Fe 2 (CO 3) 3 ↓

Кислые соли реагируют с растворами щелочей и образуют среднюю(ие) соль(ли) и воду:

NaHCO 3 +NaOH→Na 2 CO 3 +H 2 O

2KHSO 4 +2NaOH→2H 2 O+K 2 SO 4 +Na 2 SO 4

Кислые соли реагируют с растворами средних солей в том случае, если выделяется газ, выпадает осадок, или выделяется вода:

2KHSO 4 +MgCO 3 →MgSO 4 +K 2 SO 4 +CO 2 +H 2 O

2KHSO 4 +BaCl 2 →BaSO 4 ↓+K 2 SO 4 +2HCl

Кислые соли реагируют с кислотами, если кислота-продукт реакции будет более слабая или летучая, чем добавленная.

NaHCO 3 +HCl→NaCl+CO 2 +H 2 O

Кислые соли реагируют с основными оксидами с выделением воды и средних солей:

2NaHCO 3 +MgO→MgCO 3 ↓+Na 2 CO 3 +H 2 O

2KHSO 4 +BeO→BeSO 4 +K 2 SO 4 +H 2 O

Кислые соли (в частности гидрокарбонаты) разлагаются под действием температуры:
2NaHCO 3 → Na 2 CO 3 +CO 2 +H 2 O

Получение:

Кислые соли образуются при воздействии на щёлочь избытком раствора многоосновной кислоты (реакция нейтрализации):

NaOH+H 2 SO 4 →NaHSO 4 +H 2 O

Mg(OH) 2 +2H 2 SO 4 →Mg(HSO 4) 2 +2H 2 O

Кислые соли образуются при растворении основных оксидов в многоосновных кислотах:
MgO+2H 2 SO 4 →Mg(HSO 4) 2 +H 2 O

Кислые соли образуются при растворении металлов в избытке раствора многоосновной кислоты:
Mg+2H 2 SO 4 →Mg(HSO 4) 2 +H 2

Кислые соли образуются в результате взаимодействия средней соли и кислоты, которой образован анион средней соли:
Ca 3 (PO 4) 2 +H 3 PO 4 →3CaHPO 4

Основные соли:

Основные соли – продукт неполного замещения гидроксогруппы в молекулах многокислотных оснований на кислотные остатки .

Пример: MgOHNO 3 ,FeOHCl.

Химические свойства:
Основные соли реагируют с избытком кислоты, образуя среднюю соль и воду.

MgOHNO 3 +HNO 3 →Mg(NO 3) 2 +H 2 O

Основные соли разлагаются температурой:

2 CO 3 →2CuO+CO 2 +H 2 O

Получение основных солей:
Взаимодействие солей слабых кислот со средними солями:
2MgCl 2 +2Na 2 CO 3 +H 2 O→ 2 CO 3 +CO 2 +4NaCl
Гидролиз солей, образованных слабым основанием и сильной кислотой:

ZnCl 2 +H 2 O→Cl+HCl

Большинство основных солей являются малорастворимыми. Многие из них являются минералами, напримермалахит Cu 2 CO 3 (OH) 2 и гидроксилапатит Ca 5 (PO 4) 3 OH.

Свойства смешанных солей не рассматриваются в школьном курсе химии, но определение важно знать.
Смешанные соли – это соли, в составе которых к одному катиону металла присоединены кислотные остатки двух разных кислот.

Наглядный пример -Ca(OCl)Cl белильная известь (хлорка).

Номенклатура:

1. Соль содержит комплексный катион

Сначала называют катион, затем входящие в внутреннюю сферу лиганды- анионы, с окончанием на «о» ( Cl - - хлоро, OH - -гидроксо), затем лиганды, представляющие собой нейтральные молекулы ( NH 3 -амин, H 2 O -акво).Если одинаковых лигандов больше 1, о их количество обозначают греческими числительными: 1 - моно, 2 - ди,3 - три, 4 - тетра, 5 - пента, 6 - гекса, 7 - гепта, 8 - окта, 9 - нона, 10 - дека. Последним называют ион-комплексообразователь, в скобках указывая его валентность, если она переменная.

[ Ag (NH 3 ) 2 ](OH )-гидроксид диамин серебра ( I )

[ Co (NH 3 ) 4 Cl 2 ] Cl 2 -хлорид дихлор o тетраамин кобальта ( III )

2. Соль содержит комплексный анион.

Сначала называют лиганды -анионы, затем входящие в внутреннюю сферу нейтральные молекулы с окончанием на «о», указывая их количество греческими числительными. Последним называют ион-комплексообразователь на латинском, с суффиксом «ат», указывая в скобочках валентность. Далее пишется название катиона, находящегося в внешней сфере, число катионов не указывается.

K 4 -гексацианоферрат (II) калия(реактив на ионы Fe 3+)

K 3 - гексацианоферрат (III) калия(реактив на ионы Fe 2+)

Na 2 -тетрагидроксоцинкат натрия

Большинство ионов комплексообразователей- металлы. Наибольшую склонность к комплексообрзованию проявляют d элементы. Вокруг центрального иона-комплексообразователя находятся противоположно заряженные ионы или нейтральные молекулы- лиганды или адденды.

Ион-комплексообразователь и лиганды составляют внутреннюю сферу комплекса (в квадратных скобочках), число лигандов, координирующихся вокруг центрального иона называют координационным числом.

Ионы, не вошедшие в внутреннюю сферу, образуют внешнюю сферу. Если комплексный ион- катион, то во внешней сфере анионы и наоборот, если комплексный ион-анион, то во внешней сфере- катионы. Катионами обычно являются ионы щелочных и щёлочноземельных металлов, катион аммония. При диссоциации комплексные соединения дают сложные комплексные ионы, которые довольно устойчивы в растворах:

K 3 ↔3K + + 3-

Если речь идёт о кислых солях, то при чтении формулы произносится приставка гидро-, например:
Гидросульфид натрия NaHS

Гидрокарбонат натрия NaHCO 3

С основными солями же используется приставка гидроксо- или дигидроксо-

(зависит от степени окисления металла в соли), например:
гидроксохлорид магнияMg(OH)Cl, дигидроксохлорид алюминия Al(OH) 2 Cl

Способы получения солей:

1. Прямое взаимодействие металла с неметаллом . Этим способом можно получают соли бескислородных кислот.

Zn+Cl 2 →ZnCl 2

2. Взаимодействие кислоты и основания (реакция нейтрализации). Реакции этого типа имеют большое практическое значение (качественные реакции на большинство катионов), они всегда сопровождаются выделением воды:

NaOH+HCl→NaCl+H 2 O

Ba(OH) 2 +H 2 SO 4 →BaSO 4 ↓+2H 2 O

3. Взаимодействие основного оксида с кислотным :

SO 3 +BaO→BaSO 4 ↓

4. Взаимодействие кислотного оксида и основания :

2NaOH+2NO 2 →NaNO 3 +NaNO 2 +H 2 O

NaOH+CO 2 →Na 2 CO 3 +H 2 O

5. Взаимодействие основного оксида и кислота :

Na 2 O+2HCl→2NaCl+H 2 O

CuO+2HNO 3 =Cu(NO 3) 2 +H 2 O

6. Прямое взаимодействие металла с кислотой. Эта реакция может сопровождаться выделением водорода. Будет ли выделяться водорода или нет зависит от активности металла, химических свойств кислоты и ее концентрации (см. Свойства концентрированной серной и азотной кислот).

Zn+2HCl=ZnCl 2 +H 2

H 2 SO 4 +Zn=ZnSO 4 +H 2

7. Взаимодействие соли с кислотой . Эта реакция будет происходить при условии, что кислота, образующая соль слабее или более летуча, чем кислота, вступившая в реакцию:

Na 2 CO 3 +2HNO 3 =2NaNO 3 +CO 2 +H 2 O

8. Взаимодействие соли с кислотным оксидом. Реакции идут только при нагревании, поэтому, вступающий в реакцию оксид должен быть менее летучим, чем образующийся после реакции:

CaCO 3 +SiO 2 =CaSiO 3 +CO 2

9. Взаимодействие неметалла с щелочью . Галогены, сера и некоторые другие элементы, взаимодействуя с щелочами дают бескислородную и кислородосодержащую соли:

Cl 2 +2KOH=KCl+KClO+H 2 O(реакция идёт без нагревания)

Cl 2 +6KOH=5KCl+KClO 3 +3H 2 O (реакция идёт с нагреванием)

3S+6NaOH=2Na 2 S+Na 2 SO 3 +3H 2 O

10. Взаимодействие между двумя солями. Это наиболее распространённыйспособ получения солей. Для этого обе соли, вступившие в реакцию должны бать хорошо растворимы, а так как это реакция ионного обмена, то, для того, чтобы она прошла до конца, нужно чтобы 1 из продуктов реакции был нерастворим:

Na 2 CO 3 +CaCl 2 =2NaCl+CaCO 3 ↓

Na 2 SO 4 + BaCl 2 =2NaCl+BaSO 4 ↓

11. Взаимодействие между солью и металлом . Реакция протекает в том случае, если металл стоит в ряду напряжения металлов левее того, который содержится в соли:

Zn+CuSO 4 =ZnSO 4 +Cu↓

12. Термическое разложение солей . При нагревании некоторых кислородосодержащих солей образуются новые, с меньшим содержанием кислорода, или вообще его не содержащие:

2KNO 3 → 2KNO 2 +O 2

4KClO 3 → 3KClO 4 +KCl

2KClO 3 → 3O 2 +2KCl

13. Взаимодействие неметалла с солью. Некоторые неметаллы способны соединяться с солями, с образованием новых солей:

Cl 2 +2KI=2KCl+I 2 ↓

14. Взаимодействие основания с солью . Так как это реакцияионного обмена, то, для того, чтобы она прошла до конца, нужно чтобы 1 из продуктов реакции был нерастворим (это реакция так же пользуются для перевода кислых солей в средние):

FeCl 3 +3NaOH=Fe(OH) 3 ↓ +3NaCl

NaOH+ZnCl 2 = (ZnOH)Cl+NaCl

KHSO 4 +KOH=K 2 SO 4 +H 2 O

Так же таким способом можно получать и двойные соли:

NaOH+ KHSO 4 =KNaSO 4 +H 2 O

15. Взаимодействие металла с щелочью. Металлы, которые являются амфотерными реагируют с щелочами, образуя комплексы:

2Al+2NaOH+6H 2 O=2Na+3H 2

16. Взаимодействие солей(оксидов, гидроксидов, металлов) с лигандами:

2Al+2NaOH+6H 2 O=2Na+3H 2

AgCl+3NH 4 OH=OH+NH 4 Cl+2H 2 O

3K 4 +4FeCl 3 =Fe 3 3 +12KCl

AgCl+2NH 4 OH=Cl+2H 2 O

Редактор: Харламова Галина Николаевна

Которые состоят из аниона (кислотного остатка) и катиона (атом металла). В большинстве случаев это кристаллические вещества различной окраски и с разной растворимостью в воде. Простейший представитель данного класса соединений - (NaCl).

Соли делятся на кислые, нормальные и основные.

Нормальные (средние) образуются в случаях, когда в кислоте все атомы водорода замещаются на атомы металла или когда все гидроксильные группы основы замещаются на кислотные остатки кислот (например, MgSO4, Mg (CH3COO) 2). При электролитической диссоциации они разлагаются на положительно заряженные анионы металлов и отрицательно заряженные кислотные остатки.

Химические свойства солей данной группы:

Разлагаются при воздействии высоких температур;

Подвергаются гидролизу (взаимодействие с водой);

Вступают в реакции обмена с кислотами, другими солями и основаниями. При этом следует помнить некоторые особенности данных реакций:

Реакция с кислотой проходит лишь тогда, когда эта чем та, от которой происходит соль;

Реакция с основанием проходит в случае, когда образуется нерастворимое вещество;

Солевой раствор реагирует с металлом, если он стоит в электрохимическом ряду напряжений левее металла, который входит в состав соли;

Солевые соединения в растворах взаимодействуют друг с другом, если при этом образуется нерастворимый продукт обмена;

Редокс, что можно связать со свойствами катиона или аниона.

Кислые соли получают в случаях, когда лишь часть атомов водорода в кислоте замещается на атомы металлов (например, NaHSO4, CaHPO4). При электролитической диссоциации они образуют катионы водорода и металла, анионы кислотного остатка, поэтому химические свойства солей данной группы включают следующие признаки как солевых, так и кислотных соединений:

Подвергаются термическому разложению с образованием средней соли;

Взаимодействуют со щелочью, образуя нормальную соль.

Основные соли получают в случаях, когда лишь часть гидроксильных групп основ замещается на кислотные остатки кислот (например, Cu (OH) или Cl, Fe (OH) CO3). Такие соединения диссоциируют на катионы металлов и анионы гидроксила и кислотного остатка. Химические свойства солей данной группы включают характерные химические признаки и солевых веществ, и основ одновременно:

Характерно термическое разложение;

Взаимодействуют с кислотой.

Существует еще понятие комплексных и

Комплексные содержат комплексный анион или катион. Химические свойства солей такого типа включают реакции разрушения комплексов, сопровождающиеся образованием малорастворимых соединений. Кроме этого, они способны обмениваться лигандами между внутренней и внешней сферой.

Двойные же имеют два различных катиона и могут реагировать с растворами щелочей (реакция восстановления).

Способы получения солей

Данные вещества можно получить следующими способами:

Взаимодействием кислот с металлами, которые способны вытеснять атомы водорода;

При реакции основ и кислот, когда гидроксильные группы основ обмениваются с кислотными остатками кислот;

Действием кислот на амфотерные и соли или металлы;

Действием оснований на кислотные оксиды;

Реакцией между кислотными и основными оксидами;

Взаимодействием солей между собой или с металлами ;

Получение солей при реакциях металлов с неметаллами;

Кислые солевые соединения получают при реакции средней соли с одноименной кислотой;

Основные солевые вещества получают путем взаимодействия соли с небольшим количеством щелочи.

Итак, соли можно получить многими способами, так как они образуются в результате многих химических реакций между различными неорганическими веществами и соединениями.

1. Соли являются электролитами.

В водных растворах соли диссоциируют на положительно заряженные ионы (катионы) металлов и отрицательно заряженные ионы (анионы) кислотных остатков.

Например , при растворении кристаллов хлорида натрия в воде положительно заряженные ионы натрия и отрицательно заряженные ионы хлора, из которых образована кристаллическая решётка этого вещества, переходят в раствор:

NaCl → Na + + Cl − .

При электролитической диссоциации сульфата алюминия образуются положительно заряженные ионы алюминия и отрицательно заряженные сульфат-ионы:

Al 2 SO 4 3 → 2 Al 3 + + 3 SO 4 2 − .

2. Соли могут взаимодействовать с металлами.

В ходе реакции замещения, протекающей в водном растворе, химически более активный металл вытесняет менее активный.

Например , если кусочек железа поместить в раствор сульфата меди, он покрывается красно-бурым осадком меди. Раствор постепенно меняет цвет с синего на бледно-зелёный, поскольку образуется соль железа(\(II\)):

Fe + Cu SO 4 → Fe SO 4 + Cu ↓ .

Видеофрагмент:

При взаимодействии хлорида меди(\(II\)) с алюминием образуются хлорид алюминия и медь:
2 Al + 3Cu Cl 2 → 2Al Cl 3 + 3 Cu ↓ .

3. Соли могут взаимодействовать с кислотами.

Протекает реакция обмена, в ходе которой химически более активная кислота вытесняет менее активную.

Например , при взаимодействии раствора хлорида бария с серной кислотой образуется осадок сульфата бария, а в растворе остаётся соляная кислота:
BaCl 2 + H 2 SO 4 → Ba SO 4 ↓ + 2 HCl .

При взаимодействии карбоната кальция с соляной кислотой образуются хлорид кальция и угольная кислота, которая тут же разлагается на углекислый газ и воду:

Ca CO 3 + 2 HCl → CaCl 2 + H 2 O + CO 2 ⏟ H 2 CO 3 .

Видеофрагмент:

4. Растворимые в воде соли могут взаимодействовать со щелочами.

Реакция обмена возможна в том случае, если в результате хотя бы один из продуктов является практически нерастворимым (выпадает в осадок).

Например , при взаимодействии нитрата никеля(\(II\)) с гидроксидом натрия образуются нитрат натрия и практически нерастворимый гидроксид никеля(\(II\)):
Ni NO 3 2 + 2 NaOH → Ni OH 2 ↓ + 2Na NO 3 .

Видеофрагмент:

При взаимодействии карбоната натрия (соды) с гидроксидом кальция (гашёной известью) образуются гидроксид натрия и практически нерастворимый карбонат кальция:
Na 2 CO 3 + Ca OH 2 → 2NaOH + Ca CO 3 ↓ .

5. Растворимые в воде соли могут вступать в реакцию обмена с другими растворимыми в воде солями, если в результате образуется хотя бы одно практически нерастворимое вещество.

Например , при взаимодействии сульфида натрия с нитратом серебра образуются нитрат натрия и практически нерастворимый сульфид серебра:
Na 2 S + 2Ag NO 3 → Na NO 3 + Ag 2 S ↓ .

Видеофрагмент:

При взаимодействии нитрата бария с сульфатом калия образуются нитрат калия и практически нерастворимый сульфат бария:
Ba NO 3 2 + K 2 SO 4 → 2 KNO 3 + BaSO 4 ↓ .

6. Некоторые соли при нагревании разлагаются.

Причём химические реакции, которые протекают при этом, можно условно разделить на две группы:

  • реакции, в ходе которых элементы не изменяют степень окисления,
  • окислительно-восстановительные реакции.

A. Реакции разложения солей, протекающие без изменения степени окисления элементов.

В качестве примеров таких химических реакций рассмотрим, как протекает разложение карбонатов.

При сильном нагревании карбонат кальция (мел, известняк, мрамор) разлагается, образуя оксид кальция (жжёную известь) и углекислый газ:
CaCO 3 ⇄ t ° CaO + CO 2 .

Видеофрагмент:

Гидрокарбонат натрия (пищевая сода) при небольшом нагревании разлагается на карбонат натрия (соду), воду и углекислый газ:
2 NaHCO 3 ⇄ t ° Na 2 CO 3 + H 2 O + CO 2 .

Видеофрагмент:

Кристаллогидраты солей при нагревании теряют воду. Например, пентагидрат сульфата меди(\(II\)) (медный купорос), постепенно теряя воду, превращается в безводный сульфат меди(\(II\)):
CuSO 4 ⋅ 5 H 2 O → t ° Cu SO 4 + 5 H 2 O .

При обычных условиях образовавшийся безводный сульфат меди можно превратить в кристаллогидрат:
CuSO 4 + 5 H 2 O → Cu SO 4 ⋅ 5 H 2 O

Видеофрагмент:

Разрушение и образование медного купороса

Каждый день мы сталкиваемся с солями и даже не задумываемся, какую роль они играют в нашей жизни. А ведь без них и вода была бы не такой вкусной, и пища не приносила бы удовольствия, и растения не росли, да и жизнь на земле не могла бы существовать, не будь в нашем мире соли. Так что же это за вещества и какие свойства солей делают их незаменимыми?

Что такое соли

По своему составу это самый многочисленный класс, отличающийся разнообразием. Еще в 19 веке химик Й. Верцелиус дал определение соли — это продукт реакции между кислотой и основанием, при которой водородный атом заменяется металлическим. В воде обычно соли диссоциируют на металл или аммоний (катион) и кислотный остаток (анион).

Получить соли можно следующими способами:

  • путем взаимодействия металла и неметалла, в этом случае она будет бескислородная;
  • при взаимодействии металла с кислотой получается соль и выделяется водород;
  • металл может вытеснять другой металл из раствора;
  • при взаимодействии двух оксидов — кислотного и основного (еще их называют оксидом неметалла и оксидом металла соответственно);
  • при реакции оксида металла и кислоты получаются соль и вода;
  • реакция между основанием и оксидом неметалла также дает соль и воду;
  • с помощью реакции ионного обмена, при этом могут реагировать разные растворимые в воде вещества (основания, кислоты, соли), но протекать реакция будет, если образуется газ, вода или соли слаборастворимые (нерастворимые) в воде.

Только от химического состава свойства солей и зависят. Но для начала разберемся в их классах.

Классификация

В зависимости от состава выделяют следующие классы солей:

  • по содержанию кислорода (кислородсодержащие и бескислородные);
  • по взаимодействию с водой (растворимые, малорастворимые и нерастворимые).

Такая классификация отражает все многообразие веществ не полностью. Современная и наиболее полная классификация, отражающая не только состав, но и свойства солей, представлена в следующей таблице.

Соли
Нормальные Кислые Основные Двойные Смешанные Комплексные
Водород полностью замещен Атомы водорода замещены на металл не полностью Группы оснований замещены на кислотный остаток не полностью В составе два металла и один кислотный остаток В составе один металл и два кислотных остатка Сложные вещества, состоящие из комплексного катиона и аниона или катиона и комплексного аниона
NaCl KHSO 4 FeOHSO 3 KNaSO 4 CaClBr SO 4

Физические свойства

Как бы ни был широк класс этих веществ, но общие физические свойства солей выделить возможно. Это вещества немолекулярного строения, с ионной кристаллической решеткой.

Очень высокие точки плавления и кипения. При нормальных условиях все соли не проводят электричество, но в растворе большинство из них прекрасно проводит ток.

Цвет может быть самым разным, он зависит от иона металла, входящего в ее состав. Сульфат железа (FeSO 4) — зеленый, хлорид железа (FeCl 3) — темно-красный, а хромат калия (K 2 CrO 4) красивого ярко-желтого цвета. Но большинство солей все-таки бесцветные или белые.

Растворимость в воде также бывает различной и зависит от состава ионов. В принципе, все физические свойства солей имеют особенность. Они зависят от того, ион какого металла и какой кислотный остаток включены в состав. Продолжим рассматривать соли.

Химические свойства солей

Здесь тоже есть важная особенность. Как и физические, химические свойства солей зависят от их состава. А также от того, к какому классу они относятся.

Но общие свойства солей можно все-таки выделить:

  • многие из них разлагаются при нагревании с образованием двух оксидов: кислотного и основного, а бескислородные — металла и неметалла;
  • взаимодействуют соли и с другими кислотами, но реакция идет, только если в составе соли кислотный остаток слабой или летучей кислоты или в результате получается нерастворимая соль;
  • взаимодействие со щелочью возможно, если катион образует нерастворимое основание;
  • возможна реакция и между двумя разными солями, но только если одна из вновь образовавшихся солей не растворяется в воде;
  • может происходить и реакция с металлом, но она возможна, только если брать металл, расположенный правее в ряду напряжения от металла, содержащегося в соли.

Химические свойства солей, относящихся к нормальным, рассмотрены выше, другие же классы реагируют с веществами несколько иначе. Но отличие идет только по продуктам на выходе. В основном все химические свойства солей сохраняются, как и требования к протеканию реакций.

Основания

Основаниями называются соединения, содержащие в качестве аниона только гидроксид ионов ОН - . Число гидроксид ионов, способных замещаться кислотным остатком, определяет кислотность основания. В связи с этим основания бывают одно-, двух- и поликислотные однако к истинным основаниям чаще всего относят одно- и двухкислотные. Среди них следует выделить растворимые и не растворимые в воде основания. Учтите, что растворимые в воде и диссоциирующие при этом практически нацело основания называют щелочами (сильные электролиты). К ним относятся гидроксиды щелочных и щелочноземельных элементов и ни в коем случае раствор аммиака в воде.

Название основания начинается со слова гидроксид, после которого в родительном падеже приводится русское название катиона, а в круглых скобках указывается его заряд. Допускается перечисление количества гидроксид ионов с помощью приставок ди-, три-, тетра. Например: Mn(OH) 3 - гидроксид марганца (III) или тригидроксид марганца.

Обратите внимание на то, что между основаниями и основными оксидами существует генетическая связь: основным оксидам соответствуют основания. Поэтому катионы оснований чаще всего имеют заряд один или два, что соответствует низшим степеням окисления металлов.

Запомните основные способы получения оснований

1. Взаимодейетвие активных металлов с водой:

2Na + 2Н 2 О = 2NаОН + Н 2

Lа + 6Н 2 О = 2Lа(ОН) 3 + 3H 2

Взаимодействие основных оксидов с водой:

СаО + Н 2 О = Са(ОН) 2

МgО + Н 2 О = Мg(ОН) 2 .

3. Взаимодействие солей со щелочами:

МnSO 4 + 2КОН = Mn(OH) 2 ↓ + K 2 SО 4

NH 4 С1 + NaOH = NaCl + NH 3 ∙ H 2 O

Nа 2 СO 3 + Са(ОН) 2 = 2NаОН + CaCO 3

MgOHCl + NaOH = Mg(OH) 2 + NaCl.

Электролиз водных растворов солей с диафрагмой:

2NaCl + 2H 2 O → 2NaOH + Cl 2 + Н 2

Учтите, что в пункте 3 исходные реагенты необходимо подбирать таким образом, чтобы среди продуктов реакции было либо труднорастворимое соединение, либо слабый электролит.

Обратите внимание на то, что при рассмотрении химических свойств оснований условия проведения реакций зависят от растворимости основания.

1. Взаимодействие с кислотами:

NaOH + Н 2 SO 4 = NaHSO 4 + Н 2 O

2NaOH + Н 2 SO 4 = Na 2 SO 4 + 2Н 2 O

2Mg(OH) 2 + H 2 SO 4 = (MgOH) 2 SO 4 + 2H 2 O

Mg(OH) 2 + H 2 SO 4 = MgSO 4 + 2H 2 O

Mg(OH) 2 + 2H 2 SO 4 = Mg(HSO 4) 2 + 2H 2 O

2. Взаимодействие с кислотными оксидами:

NaOH + CO 2 = NaHCO 3

2NaOH + CO 2 = Na 2 CO 3 + H 2 O

Fe(OH) 2 + P 2 O 5 = Fe(PO 3) 2 + H 2 O

ЗFе(OH) 2 + P 2 O 5 = Fe 3 (PO 4) 2 + 2H 2 O

3. Взаимодействие с амфотерными оксидами:

А1 2 O 3 + 2NaOH p +3H 2 O = 2Na

Al 2 O 3 + 2NaOH T = 2NaAlO 2 + H 2 O


Cr 2 O 3 + Mg(OH) 2 = Mg(CrO 2) 2 + H 2 O

4. Взаимодействие с амфтерными гидроксидами:

Са(ОН) 2 + 2Al(ОН) 3 = Ca(AlO 2) 2 + 4H 2 O

3NaOH + Cr(ОН) 3 = Na 3

Взаимодействие с солями.

К реакциям, описанным в пункте 3 способов получения, следует добавить:

2ZnSO 4 + 2КОН = (ZnOH) 2 S0 4 + K 2 SO 4

NaHCO 3 + NaOH = Na 2 CO 3 + Н 2 O

BeSO 4 + 4NaOH = Na 2 + Na 2 SO 4

Cu(OH) 2 + 4NH 3 ∙H 2 O = (OH) 2 + 4H 2 O

6. Окисление до амфотерных гидроксидов или солей:

4Fe(ОН) 2 + O 2 + 2Н 2 O = 4Fe(OH) 3

2Сг(ОН) 2 + 2Н 2 O + Na 2 O 2 + 4NaOH = 2Na 3 .

7. Разложение при нагревании:

Са(OН) 2 = СаО + Н 2 О.

Учтите, что гидроксиды щелочных металлов, кроме лития, в таких реакциях не участвуют.

!!!Бывают ли щелочные осадки?!!! Да, бывают, однако они не столь распространены, как кислотные осадки, малоизвестны, а их влияние на объекты окружающей среды практически не исследовано. Тем не менее их рассмотрение заслуживает внимания.

Происхождение щелочных осадков можно объяснить следующим образом.

СаСО 3 →СаО + СO 2

В атмосфере оксид кальция соединяется с водяными парами при их конденсации, с дождем или мокрым снегом, образуя при этом гидроксид кальция:

CaO + H 2 O →Ca(OH) 2 ,

который и создает щелочную реакцию атмосферных осадков. В дальнейшем возможно взаимодействие гидроксида кальция с углекислым газом и водой с образованием карбоната и гидрокарбоната кальция:

Са(ОН) 2 + СO 2 → СаСO 3 + Н 2 О;

СаСО 3 + СO 2 + H 2 O → Са(НС0 3) 2 .

Химический анализ дождевой воды показал, что в ней в незначительном количестве присутствуют сульфат- и нитрат-ионы (порядка 0,2 мг/л). Как известно, причиной кислотного характера осадков являются серная и азотная кислоты. В то же время наблюдается большое содержание катионов кальция (5-8 мг/л) и гидрокарбонат-ионов, содержание которых в районе предприятий строительного комплекса в 1,5-2 раза больше, чем в других районах города, и составляет 18-24 мг/л. Это показывает, что в образовании локальных щелочных осадков главную роль играет карбонатно-кальциевая система и происходящие в ней процессы, о чем было сказано выше.

Щелочные осадки оказывают влияние на растения, отмечаются изменения в фенотипическом строении растений. Наблюдаются следы «ожогов» на листовых пластинках, белый налет на листьях и угнетенное состояние травянистых растений.