Строение и функции коры больших полушарий. Двигательные функции коры больших полушарий. Физиология коры больших полушарий

  • 01.10.2019

ФУНКЦИИ КОРЫ БОЛЬШИХ ПОЛУШАРИЙ

В функциональном отношении кора больших полушарий делиться на три области: сенсорную, двигательную (моторную) и ассоциативную кору. Сенсорная область включает те области коры больших полушарий, в которых проецируются сенсорные раздражители. Сенсорная кора располагается преимущественно в теменной, височной и затылочной долях большого мозга. Афферентные пути в сенсорную кору поступают преимущественно от специфических сенсорных ядер таламуса. Зоны сенсорной коры включают первичные и вторичные области коры. В первичных областяхкорыформируются ощущения одного качества. Во вторичных областях коры формируются ощущения, возникающее в ответ на действие нескольких раздражителей.

Основные сенсорная области коры находиться в:

Постцентральной извилине: кожной чувствительности от тактильных, болевых температурных рецепторов; чувствительность опорно-двигательного аппарата – мышц, суставов, сухожилий; тактильная и вкусовая чувствительность языка.

- средняя височная извилина (и. Гешля), здесь формируются звуковые ощущения,–

Верхняя и средняя височная извилина, здесь локализуется центр вестибулярного анализатора, формируются ощущения «схемы тела»

- областьклиновидной извилины – первичная зрительная область, расположенная в затылочной коре.

Ассоциативная область коры включает участки, расположенные рядом с сенсорными и двигательными зонами, но не выполняющие непосредственно чувствительных или двигательных функций. Границы этих областей обозначены недостаточно четко. В ассоциативной коре можно выделить зоны:

Таламолобная система;

Таламотеменная система;

Таламовисочная система.

Таламолобная система участвует в формировании доминирующей мотивации:эта функция обусловлена двусторонней связью между лобной корой и лимбической системой, обеспечивает вероятности прогнозирования и самоконтроля действий путем постоянного сравнения результат действия с исходными намерениями.

Таламотеменная система выполняет функции гнозиса, формирование «схемы тела» - стереогнизис, и праксиса. Гнозис – это функция различных видов узнавания: формы, величины, значения предметов, понимания речи, познание процессов и закономерностей. Стереогнизис функция обеспечивающая способность узнавания предметов на ощупь. В центре стереогнизиса формируются ощущения, отвечающие за создание трехмерной модели тела – «схема тела». Праксис – это функция, направленная на выполнение какой-либо деятельности, ее центр располагается в надкраевой извилине, обеспечивает хранение и реализацию программы двигательных актов (рукопожатие, причесывание и т.д.).

Таламовисочная системанаходится в верхней извилине височной коры, здесь расположен слуховой центр речи Вернике. Он обеспечивает речевой гнозис – распознавание и хранение устной речи. В средней части верхней височной извилины находится центр распознания музыкальных звуков. В границах височной, теменной и затылочной долей находится центр чтения письменной речи, обеспечивающий распознание и хранение образов письменной речи.

Двигательная кора занимает области лобной доли коры больших полушарий. В первичной моторной коре (прецентральная извилина) расположены нейроны, иннервирующие мотонейроны мышц лица, туловища и конечностей. Вторичная двигательная кора расположена на латеральной поверхности полушарий, впереди прецентарльной извилины (премоторная кора). Она осуществляет высшие двигательные функции, связанные с планированием и координацией произвольных движений. Эта кора получает основную часть эфферентной импульсации от базальных ядер и мозжечка и участвует в перекодировке информации программ сложных движений. В премоторной коре расположены центры, связанные с социальными функциями человека:

В заднем отделе средней лобной извилины - центр письменной речи,

В заднем отделе нижней лобной извилины центр моторной речи Брока, обеспечивающие речевой праксис, а также музыкальный моторный центр, определяющий тональность речи.

Нейроны двигательной коры получают афферентные входы через таламус от мышечных, суставных и кожных рецепторов, а также от базальных ганглиев и мозжечка. Основные эфферентные выходы двигательной коры на стволовые и спинальные моторные центры формируют пирамидные клетки коры. Пирамидные нейроны двигательной коры возбуждают или тормозят мотонейроны стволовых и спинальных центров.

Одним из основных принципов функционирования коры больших полушарий головного мозга является принцип межполушарной асимметрии. Межполушарная асимметрия обусловлена асимметричной локализацией нервного аппарата второй сигнальной системы и доминированием правой руки, как средства адаптивного поведения. По данным современной нейрофизиологии (В.Л. Бианки), левое полушарие большого мозга у человека специализируется на выполнение вербальных символических функций, а правое полушарие на реализации пространственных образных функций. Результатом такого функционального разделения является асимметрия психической деятельности, которая проявляется различиями типах мыслительных операций. Доминирование левого полушария обусловливает мыслительный тип, а правого полушария художественный тип мышления.

ПРАКТИЧЕСКАЯ РАБОТА

Для определения коэффициента функциональной асимметрии используются бланки, представляющие собой листы бумаги (А4), на которых расположены 8 равных прямоугольников по 4 в ряд. Каждый прямоугольник заполняется последовательно слева направо с №1 по №4 и в обратном направлении с №5 по №8. Форма бланка представлена на рисунке 1.

Рисунок 1 – Бланк задания

Инструкция: «По моему сигналу вы должны начать проставлять точки в каждом прямоугольнике бланка. За отведенное для каждого прямоугольника время (5 с) вы должны поставить в нем как можно больше точек. Переходить из одного прямоугольника в другой нужно по команде, не прерывая работы. Все время работаете в максимальном для себя темпе. Теперь возьмите в правую (или левую руку) карандаш и поставьте его перед первым прямоугольником бланка».

По секундомеру экспериментатор подает сигнал: «Начали!», затем через каждые 5 секунд дает команду: «Следующий!». По истечении 5 секунды работы в прямоугольнике №8 экспериментатор подает команду: «Стоп». Подсчитайте количество точек в каждом квадрате и заполните таблицу 1 в рабочей тетради.

Таблица 1 – Протокол исследования



Используя результаты таблицы 1, составьте график зависимости между временем выполнения этапа задания (ось Х) и количеством точек для каждой руки (ось Y). Сделайте вывод, руководствуясь следующей закономерностью: у правшей – работоспособность правой руки выше работоспособности левшей, а у левшей – наоборот.

Рассчитайте коэффициент функциональной асимметрии по работоспособности левой и правой руки, получив суммарные значения работоспособности рук путем сложения всех данных по каждому из восьми прямоугольников. Для расчета используйте формулу для оценки коэффициента функциональной асимметрии (1):

KF A = [(SR - SL) / (SR + SL)] (1)

где KF A – коэффициент функциональной асимметрии, д.е.;

SR – общая сумма точек, поставленных правой рукой, шт;

SL – общая сумма точек, поставленных правой левой, шт.

Знак коэффициента функциональной асимметрии интерпретируется следующим образом: если величина коэффициент принимает положительное значение «+», это свидетельствует о смещении баланса в сторону активности левого полушария; если полученный коэффициент принимает отрицательное значение, знак «–», это указывает на активность правого полушария.

Проанализируйте получившийся результат и сделайте вывод.


Синонимы: проекционная кора или корковый отдел анализаторов

Третичная кора

На одном графике две кривые – для правой (синий) и левой руки (красный);

Раньше считалось, что высшие функции мозга человека осуществляются корой больших полушарий. Еще в прошлом веке было установлено, что при удаление коры у животных, они теряют способность к выполнению сложных актов поведения, обусловленных приобретенным жизненным опытом. Сейчас установлено, что кора не является высшим распределителем всех функций. Многие ее нейроны входят в состав сенсорных и двигательных систем среднего уровня. Субстратом высших психических функций являются распределительные системы ЦНС, в состав которых входит и подкорковые структуры, и нейроны коры. Роль любой области коры зависит от внутренней организации её спналтических связей, а также ее связей с другими образованиями ЦНС. Вместе с тем. у человека в процессе эволюции произошла кортиколизация всех, в том числе и жизненно важных висцеральных функций. Т.е. их подчинение коре. Она стала главной интегрирующей системой всей ЦНС. Поэтому в случае гибели значительной части нейронов коры у человека, его организм становится нежизнеспособным и погибает в результате нарушения гомеостаза (гипотермия мозга). Кори головного мозга состоит из шести слоев:

I. Молекулярный слой, самый верхний. Образован множеством восходящих дендритов пирамидных нейронов. Тел нейронов в нем мало. Этот слой пронизывают аксоны неспецифических ядер таламуса относящихся к ретикулярной формации. За счет такой структуры слой обеспечивает активацию всей коры.

2-Наружный зернистый слой. Формируется плотно расположенными мелкими нейронами, имеющими многочисленные синаптические контакты между собой. Благодаря этому наблюдается длительная циркуляция нервных импульсов. Это является одним из механизмов памяти.

3. Наружный пирамидный слой. Состоит из мелких пирамидных клеток. С помощью их и клеток второго слоя происходит образование межкортикальных связей, т.е. связей между различными областями коры.

4. Внутренний зернистый слой. Содержит звездчатые клетки, на которых образуют синапсы аксоны переключающих и ассоциативных нейронов таламуса. Сюда поступает вся информация от периферических рецепторов.

5. Внутренний пирамидный слой. Образован крупными пирамидными нейронами, аксоны которых образуют нисходящие пирамидные пути, направляющиеся в продолговатый и спинной мозг.

6. Слой полиморфных клеток. Аксоны его нейронов идут к таламусу.

Корковые нейроны образуют нейронные сети, включающие три основных компонента:

1. афферентные или входные волокна.

2.интернейроны

3. эфферентные - выходные нейроны. Эти компоненты образуют несколько уровней нейронных сетей.

1. микросети. Самый нижний уровень. Это отдельные межнейронные синапсы с их пре- и постсинаптическими структурами Синапс является сложным функциональным элементом, имеющим внутренние саморёгуляторные механизмы. Нейроны коры имеют сильно разветвленные дендриты. На них находится огромное количество шипиков в виде барабанных палочек. Эти шипики служат для образования входных синапсов. Корковые синапсы чрезвычайно"" чувствительны к внешним воздействиям. Например, лишение зрительных раздражений, путем содержания растущих животных в темноте, приводит к значительному уменьшению синапсов в зрительной коре. При болезни Дауна синапсов в коре также меньше, чем в норме. Каждый шипик образующий синапс, выполняет роль преобразователя сигналов идущих к нейрону.

2. Локальные сети. Новая кора слоистая структура, слои которой образованы локальными нейронными сетями. К ней через таламус и обонятельный мозг, могут приходить импульсы от всех периферических рецепторов. Входные волокна проходят через все слои, образуя синапсы с их нейронами. В свою очередь, коллатерали входных волокон и интернейроны этих слоев образуют локальные сети на каждом уровне коры. Такая структура коры обеспечивает возможность обработки, хранения и взаимодействия различной информации. Кроме того, в коре имеется несколько типов выходных нейронов. Практически каждый ее слой дает выходные волокна, направляющиеся к другим слоям или отдаленным участкам коры.

3. Корковые колонки. Входные и выходные элементы с интернейронами образуют вертикальные корковые колонки пли локальные модули. Они проходят через все слои коры. Их диаметр составляет 300-500 мкм. Образующие эти колонки нейроны концентрируются вокруг таламо-кортикального волокна, несущего определенный вид сигналов. В колонках имеются многочисленные межнейронные связи. Нейроны 1-5 слоев колонок обеспечивают восприятие и переработку поступающей информации. Нейроны 5-6 слоя образуют эфферентные пути коры. Соседние колонки также связаны между собой. При этом возбуждение одной сопровождается торможением соседних. В определенных областях коры сосредоточены колонки, выполняющие однотипную функцию. Эти участки называются цитоархитектоническими полями. В коре человека их 53. Поля делят на первичные, вторичные, третичные.

Первичные обеспечивают обработку определенной сенсорной информации.

Вторичные и третичные взаимодействие сигналов разных сенсорных систем. В частности, первичное соматосенсорное поле, к которому идут импульсы от всех кожных рецепторов (тактильных, температурных, болевых) находится в области центральной задней извилины. Больше всего места в коре занимает представительство губ, лица, кистей рук. Поэтому при поражениях этой зоны изменяется чувствительность соответствующих участков кожи. Представительство проприорецепторов мышц и сухожилий, т.е. моторная кора занимает переднюю центральную извилину. Импульсы от проприорецепторов нижних конечностей идут к верхней части извилины. От мышц туловища к средней части. От мускулатуры головы и шеи к ее нижней части. Наибольшую площадь этого поля также занимает представительство мускулатуры губ, языка, кистей и лица.

Импульсы от рецепторов глаза поступают в затылочные области коры около шпорной борозды. Поражение первичных полей приводит к корковой слепоте, а вторичных и третичных - потере зрительной памяти. Слуховая область коры расположена в верхней височной извилине и поперечной извилине Гешля. При поражении первичных полей зоны развивается корковая глухота. Периферических - трудности в различении звуков. В задней трети верхней височной извилины левого полушария находится сенсорный центр речи - центр Вернике. При его патологических изменениях теряется способность к пониманию речи. Двигательный центр речи - центр Брока, располагается в нижней лобной извилине левого полушария. Нарушения в этой части коры приводят к потере способности произносить слова.

Функциональная асимметрия полушарий.

Передний мозг образован двумя полушариями, которые состоят из одинаковых долей. Однако они играют разную функциональную роль. Впервые различия между полушариями описал 1863 г. невропатолог Поль Брэка. обнаруживший, что при опухолях левой лобной доли теряется способность к произношению речи. В 50-х годах XX века Р.Сперри и М.Газзанига исследовали больных, у которых с целью прекращения эпилептических припадков была произведена перерезка мозолистого тела. В нем проходят комиссуральные волокна, связывающие полушария. Умственные способности у людей с расщепленным" мозгом не изменяются. Но с помощью специальных тестов обнаружено, что функции полушарий отличаются. Например, если предмет находится в поле зрения правого глаза, то зрительная информация поступает в левое полушарие, то такой больной может назвать его, описать его свойства. прочитать или написать текст.

Если же предмет попадает в поле зрения левого глаза, то пациент даже не может назвать его и рассказать о нем. Он не может читать этим глазом. Таким образом, левое полушарие является доминирующим в отношении сознания, речи, счета, письма, абстрактного мышления, сложных произвольных движений. С другой, стороны, хотя правое полушарие не имеет выраженных речевых функций, оно в определенной степени способно понимать речь и мыслить абстрактно. Но в значительно большей мере, чем левое, оно обладает механизмами сенсорного распознавания предметов образной памяти. Восприятие музыки целиком является функцией правого полушария. Т.е. правое полушарие отвечает за неречевые функции, т.е. анализ сложных зрительных и слуховых образов, восприятие пространства, формы. Каждое полушарие изолированно принимает, перерабатывает и хранит информацию. Они обладают собственными ощущениями, мыслями, эмоциональными оценками событий. Левое полушарие обрабатывает информацию аналитически, т.е. последовательно, а правое одномоментно, интуитивно. т.е. полушария используют разные способы познания. Вся система образования в мире направлена на развитие левого полушария, т.е. абстрактного мышления, а не интуитивного. Несмотря на функциональную асимметрию, в норме полушария работают совместно, обеспечивая все процессы человеческой психики.

Пластичность коры.

Некоторые ткани сохраняют способность к образованию новых клеток из клеток-предшественников в течение всей жизни. Это клетки печени, кожи энтероциты. Нервные клетки не обладают такой способностью. Однако у них сохраняется способность к образованию новых отростков и синапсов т.е каждый нейрон способен при повреждении отростка образовывать новые. Восстановление отростков может происходить двумя путями: путем формирования нового конуса роста и образования коллатералей. Обычно росту нового аксона препятствует возникновение, глиального рубца. Но несмотря на это новые синаптические контакты образуются коллатералям и поврежденного аксона. Наиболее высока пластичность нейронов коры. Любой ее нейрон запрограммирован на то, что при его повреждении он активно пытается восстановить утраченные связи. Каждый нейрон вовлечен, а конкурентную борьбу с другими за образование синаптических контактов. Это служит основой пластичности нейронных корковых сетей. Установлено, что при удалении мозжечка нервные пути, идущие к нему, начинают прорастать в кору. Если в интактный мозг пересадить участок мозга другого животного, то нейроны этого кусочка ткани образуют многочисленные контакты с нейронами мозга реципиента.

Пластичность коры проявляется как в нормальных условиях. Например, при образовании новых межкортикальных связей в процессе обучения, так и при патологии. В частности, утраченные при поражении участка коры функции берут на себя ее соседние поля или другое полушарие. Даже при поражении обширных областей коры вследствие кровоизлияния, их функции начинают выполнять соответствующие области противоположного полушария.

Элгктроэнцефалография. Ее значение для экспеперементальных исследований и клиники.

электроэнцефалография (ЭЭГ - это регистрация электрической активности мозга с поверхности кожи головы. Впервые ЭЭГ человека зарегистрировал в 1929 г. немецкий психиатр Г.Бергер. При снятии ЭЭГ на кожу накладывают электроды, сигналы от которых усиливаются и подаются на осциллограф и пишущее устройство. В норме регистрируются следующие типы спонтанных колебаний:

1. а-ритм. Это волны с частотой 8-13 Гц. Наблюдается в состоянии бодрствования, полного покоя и при закрытых глазах. Если человек открывает глаза а-ритм сменяется р-ритмом. Это явление называется блокадой а-ритма.

2. В-ритм, Его частота от 14 до 30 Гц. Наблюдается при деятельном состоянии мозга и читается по мере повышения интенсивности умственной работы.

3. (гама) - ритм. Колебания с частотой 4-8 Гц. Регистрируется во время засыпания.

поверхностного сна и неглубоком наркозе.

4. (сигма) - ритм. Частота 0,5-3,5 Гц. Наблюдается при глубоком сне и наркозе.

Чем ниже частота ритмов ЭЭГ, тем больше их амплитуда. Помимо эти основных ритмов регистрируются и другие ЭЭГ феномены. Например, по мере углубления сна появляются сонные веретена. Это периодическое увеличение частоты и амплитуды тета- ритма. При ожидании команды к действию возникает отрицательная Е-волна ожидания и т.д.

В эксперименте ЭЭГ используют для определения уровня активности мозга, а в клинике для диагностики эпилепсии (особенно скрытых форм), а также для выявление смерти мозга (кора живет 3-5 мин, стволовые нейроны 7-10, сердце 90. почки 150).

Кора больших полушарий головного мозга представляет собой наиболее молодое образование ЦНС. В филогенезе объем новой коры (плаща) увеличивается. Так, новая кора по отношению ко всей коре у ежа составляет 32,4%, у кролика - 56, у собаки - 84,2, а у человека - 95,9%.

Кора больших полушарий состоит из трех зон: древней, старой и новой. В древнюю кору входят обонятельная доля, боковая обонятельная извилина. Старая кора состоит из гиппокамповой и зубчатой извилин. Новая кора представляет собой зону проекции внешней рецепции на поле воспринимаемых нейронов коры. У человека поверхность новой коры составляет 1500 см 3 . Быстрое развитие проекционных полей, ассоциативных областей коры, и медленное развитие костей черепа привело к образованию складок: борозд и извилин.

Кора состоит из 14 млрд клеток, расположенных в шести слоях (рис. 3.11).

  • 1. Молекулярный слой коры головного мозга - образован волокнами, сплетенными между собой, содержит мало клеток.
  • 2. Наружный зернистый слой коры головного мозга - характеризуется густым расположением мелких нейронов самой различной формы.
  • 3. Наружный пирамидный слой коры головного мозга - состоит в основном из пирамидных нейронов разной величины, более крупные клетки лежат более глубоко.
  • 4. Внутренний зернистый слой коры головного мозга - характеризуется рыхлым расположением мелких нейронов различной величины, мимо которых проходят плотные пучки волокон перпендикулярно к поверхности коры.
  • 5. Внутренний пирамидный слой коры головного мозга - состоит в основном из средних и больших пирамидных нейронов, апикальные дендриты которых простираются до молекулярного слоя.
  • 6. Слой веретеновидных клеток коры головного мозга - в нем расположены веретеновидные нейроны, глубинная часть этого слоя переходит в белое вещество головного мозга. Слои 2, 4 и 6 состоят из воспринимающих клеток. Слои 3 и 5 - пирамидные, дающие начало нисходящим двигательным путям. Восходящий путь проходит через все корковые слои (специфический путь). Неспецифический путь также проходит через все корковые слои.

Как показал киевский анатом В.А. Бец, не только вид нервных клеток, но и их взаиморасположение неодинаково в различных участках коры. Распределение нервных клеток в коре обозначается термином «цитоархитектоника». Исследования, проведенные учеными разных стран в конце XIX и начале XX столетия, позволили

Рис. 3.11.

С.Г. Кривощеков, 2012)

создать цитоархитектонические карты коры большого мозга человека и животных, в основу которых были положены особенности строения коры в каждом участке полушария. К. Бродман выделил в коре 52 цитоархитектонических поля, Ф. Фогт и О. Фогт с учетом волоконного строения описали в коре большого мозга 150 миелоар- хитектонических участков.

Белое вещество полушарий расположено между корой и базальными ганглиями. Оно состоит из большого количества волокон, идущих в разных направлениях. Это проводящие пути конечного мозга. Различают три вида этих путей:

  • 1) проекционный путь. Он связывает кору с промежуточным мозгом и другими отделами ЦНС. Это восходящие и нисходящие пути;
  • 2) комиссуральный путь. Его волокна входят в состав мозговых комиссур, которые соединяют соответствующие части правого и левого полушарий. Входят в состав мозолистого тела;
  • 3) ассоциативные пути связывают участки коры одного и того же полушария.

В коре больших полушарий располагаются высшие регуляторные центры, обеспечивающие контроль и регуляцию всех рефлекторных процессов организма, психическую деятельность, поведение, восприятие всех видов чувствительности.

Электрическая активность коры больших полушарий. Изменения функционального состояния коры отражаются на характере ее биопотенциалов. Регистрацию электроэнцефалограммы (ЭЭГ), т.е. электрической активности коры, можно производить через неповрежденные покровы головы (в естественных условиях на животных и человеке) и регистрировать суммарную активность всех ближайших к поверхности нейронов. Современные элекгроэнцефалографы усиливают эти потенциалы в 2-3 млн раз и дают возможность исследовать ЭЭГ от многих точек коры одновременно.

В ЭЭГ различают определенные диапазоны частот, называемые ритмами ЭЭГ, и амплитуды волн (рис. 3.12). В состоянии относительного покоя чаще всего регистрируется альфа-ритм, в состоянии активного внимания - бета-ритм, при засыпании, некоторых эмоциональных состояниях - тэта-ритм, при глубоком сне, потере сознания, наркозе - дельта-ритм.

В ЭЭГ отражаются особенности взаимодействия корковых нейронов при умственной и физической работе. Отсутствие налаженной координации при выполнении непривычной или тяжелой работы приводит к так называемой десинхронизации ЭЭГ - быстрой асинхронной активности.

В процессе обучения и овладения разными двигательными навыками происходит перестройка и совершенствование функций коры больших полушарий: увеличиваются амплитуда и регулярность проявления фоновой активности - альфа-ритма в состоянии покоя, значительно усиливается по сравнению с состоянием относительного покоя взаимосвязанность (синхронность и синфазность) электриче-

Рис. 3.12. Биопотенциалы коры больших полушарий на ЭЭГ (Дж. Хэссет, 1981) ской активности различных областей коры. Это облегчает функциональные взаимодействия между различными корковыми центрами. Между этими зонами устанавливается общий ритм активности. В такие характерные системы взаимодействующих корковых зон включаются не только первичные поля (моторные, зрительные и др.), но и вторичные (например, премоторные и др.) и особенно третичные поля: передние - программирующие лобные области и задние - зоны афферентного синтеза (нижнетеменные и др.).

Современным ученым доподлинно известно, что благодаря функционированию головного мозга возможны такие способности, как осознание сигналов, которые получены из внешней среды, мыслительная деятельность, запоминание мышления.

Способность личности осознавать собственные отношения с другими людьми непосредственно связано с процессом возбуждения нейронных сетей. Причем речь идет именно о тех нейронных сетях, которые расположены в коре. Она представляет собой структурную основу сознания и интеллекта.

В данной статье рассмотрим, как устроена кора головного мозга, зоны коры головного мозга будут подробно описаны.

Неокортекс

Кора включает в себя около четырнадцати миллиардов нейронов. Именно благодаря им осуществляется функционирование основных зон. Подавляющая часть нейронов, до девяноста процентов, формирует неокортекс. Он является частью соматической НС и ее высшим интегративным отделом. Важнейшими функциями коры головного мозга выступают восприятие, переработка, интерпретация информации, которую человек получает при помощи всевозможных органов чувств.

Помимо этого, неокортекс управляет сложными движениями системы мышц человеческого тела. В нем расположены центры, принимающие участие в процессе речи, хранении памяти, абстрактном мышлении. Большая часть процессов, которые в нем происходят, формирует нейрофизическую основу человеческого сознания.

Из каких отделов еще состоит кора головного мозга? Зоны коры головного мозга рассмотрим ниже.

Палеокортекс

Является еще одним большим и важным отделом коры. В сравнении с неокортексом у палеокортекса более простая структура. Процессы, которые здесь протекают, редко отражаются в сознании. В этом отделе коры высшие вегетативные центры локализуются.

Связь коркового слоя с другими отделами мозга

Немаловажно рассмотреть связь, которая имеется между нижележащими отделами мозга и корой больших полушарий, например, с таламусом, мостом, средним мостом, базальными ядрами. Осуществляется эта связь при помощи крупных пучков волокон, которые внутреннюю капсулу формируют. Пучки волокон представлены широкими пластами, которые сложены из белого вещества. В них расположено огромное количество нервных волокон. Некоторая часть этих волокон обеспечивает передачу нервных сигналов к коре. Остальная часть пучков передает нервные импульсы к расположенным ниже нервным центрам.

Как устроена кора головного мозга? Зоны коры головного мозга будут представлены далее.

Строение коры

Самым большим отделом мозга является его кора. Причем зоны коры являются лишь одним типом частей, выделяемых в коре. Помимо этого кора разделена на два полушария - правое и левое. Между собой полушария соединены пучками белого вещества, формирующими мозолистое тело. Его функция - обеспечивать координацию деятельности обоих полушарий.

Классификация зон коры головного мозга по их расположению

Несмотря на то что кора имеет огромное количество складок, в общем расположение ее отдельных извилин и борозд постоянно. Главные их них являются ориентиром при выделении областей коры. К таким зонам (долям) относятся - затылочная, височная, лобная, теменная. Несмотря на то что они классифицируются по месту расположения, каждая из них имеет свои собственные специфические функции.

Слуховая зона коры головного мозга

К примеру, височная зона является центром, в котором расположен корковый отдел анализатора слуха. Если происходит повреждение этого отдела коры, может возникнуть глухота. Помимо этого в слуховой зоне расположен центр речи Вернике. Если повреждению подвергается он, то человек теряется способность к восприятию устной речи. Человек воспринимает ее как простой шум. Также в височной доле есть нейронные центры, которые относятся к вестибулярному аппарату. Если повреждаются они, нарушается чувство равновесия.

Речевые зоны коры головного мозга

В лобной доле коры сосредоточены речевые зоны. Речедвигательный центр расположен тоже здесь. Если происходит его повреждение в правом полушарии, то человек теряет способность изменять тембр и интонацию собственной речи, которая становится монотонной. Если же повреждение речевого центра произошло в левом полушарии, то пропадает артикуляция, способность к членораздельной речи и пению. Из чего еще состоит кора головного мозга? Зоны коры головного мозга имеют различные функции.

Зрительные зоны

В затылочной доле располагается зрительная зона, в которой находится центр, отвечающий на наше зрение как таковое. Восприятие окружающего мира происходит именно этой частью мозга, а не глазами. Именно затылочная зона коры ответственна за зрение, и ее повреждение может привести к частичной или полной потере зрения. Зрительная зона коры головного мозга рассмотрена. Что дальше?

Для теменной доли тоже характерны свои собственные специфические функции. Именно эта зона отвечает за способность анализировать информацию, которая касается тактильной, температурной и болевой чувствительности. Если происходит повреждение теменной области, рефлексы головного мозга нарушаются. Человек не может на ощупь распознавать предметы.

Двигательная зона

Поговорим о двигательной зоне отдельно. Следует отметить, что эта зона коры никак не соотносится с долями, рассмотренными выше. Она является частью коры, содержащей прямые связи с мотонейронами в спинном мозге. Такое название носят нейроны, непосредственно управляющие деятельностью мышц тела.

Основная двигательная зона коры больших полушарий располагается в извилине, которая называется прецентральной. Эта извилина представляет собой зеркальное отображение сенсорной зоны по многим аспектам. Между ними имеется контралатеральная иннервация. Если сказать иными совами, то иннервация направлена на мышцы, которые расположены на другой стороне тела. Исключение - лицевая область, для которой характерен контроль мышц двусторонний, расположенных на челюсти, нижней части лица.

Немного ниже основной двигательной зоны расположена дополнительная зона. Ученые полагают, что она имеет независимые функции, которые связаны с процессом вывода двигательных импульсов. Дополнительная двигательная зона также изучалась специалистами. Эксперименты, которые ставились над животными, показывают, что стимуляция этой зоны провоцирует возникновение двигательных реакций. Особенностью является то, что подобные реакции возникают даже в том случае, если основная двигательная зона была изолирована или разрушена полностью. Она также вовлечена в планирование движений и в мотивацию речи в полушарии, которое является доминантным. Ученые полагают, что при повреждении дополнительной двигательной может возникнуть динамическая афазия. Рефлексы головного мозга страдают.

Классификация по строению и функциям коры головного мозга

Физиологические эксперименты и клинические испытыния, которые проводились еще в конце девятнадцатого века, позволили установить границы между областями, на которые проецируются разные рецепторные поверхности. Среди них выделяют органы чувств, которые направлены на внешний мир (кожная чувствительность, слух, зрение), рецепторы, заложенные непосредствен в органах движения (двигательный или кинетический анализаторы).

Зоны коры, в которых располагаются разнообразные анализаторы, могут быть классифицированы по строению и функциям. Так, их выделяют три. К ним относятся: первичная, вторичная, третичная зоны коры головного мозга. Развитие эмбриона предполагает закладывание только первичных зон, характеризующихся простой цитоархитектоникой. Далее происходит развитие вторичных, третичные развиваются в самую последнюю очередь. Для третичных зон характерно самое сложное строение. Рассмотрим каждую из них немного подробнее.

Центральные поля

За долгие годы клинических исследований ученым удалось накопить значительный опыт. Наблюдения позволили установить, например, что повреждения различных полей, в составе корковых отделов разных анализаторов, могут отразиться далеко не равнозначно на общей клинической картине. Если рассматривать все эти поля, то среди них можно выделить одно, которое занимает центральное положение в ядерной зоне. Такое поле носит название центрального или первичного. Находится оно одновременно в зрительной зоне, в кинестетической, в слуховой. Повреждение первичного поля влечет за собой весьма серьезные последствия. Человек не может воспринимать и осуществлять самые тонкие дифференцировки раздражителей, влияющих на соответствующие анализаторы. Как еще классифицируются участки коры головного мозга?

Первичные зоны

В первичных зонах расположен комплекс нейронов, который наиболее предрасположен к обеспечению двусторонних связей между корковыми и подкорковыми зонами. Именно этот комплекс наиболее прямым и коротким путем соединяет кору больших полушарий с разнообразными органами чувств. В связи с этим данные зоны обладают способностью очень подробной идентификации раздражителей.

Важной общей чертой функциональной и структурной организации первичных областей является то, все они имеют четкую соматическую проекцию. Это означает, что отдельные периферические точки, например, кожные поверхности, сетчатка глаза, скелетная мускулатура, улитки внутреннего уха, имеют собственную проекцию в строго ограниченные, соответствующие точки, которые находятся в первичных зонах коры соответствующих анализаторов. В связи с этим им было дано название проекционных зон коры головного мозга.

Вторичные зоны

По-другому эти зоны называются периферическими. Такое название дано им совсем не случайно. Они находятся в периферических отделах участков коры. От центральных (первичных) вторичные зоны отличаются нейронной организацией, физиологическими проявлениями и особенностями архитектоники.

Попробуем разобраться, какие эффекты возникают, если на вторичные зоны воздействует электрический раздражитель или происходит их повреждение. Главным образом возникающие эффекты касаются наиболее сложных видов процессов в психике. В том случае, если происходит повреждение вторичных зон, то элементарные ощущения остаются в относительной сохранности. В основном наблюдаются нарушения в способности правильного отражения взаимных соотношений и целых комплексов элементов, из которых состоят различные объекты, которые мы воспринимаем. К примеру, если повреждению подверглись вторичные зоны зрительной и слуховой коры, то можно наблюдать возникновение слуховых и зрительных галлюцинаций, которые разворачиваются в определенной временной и пространственной последовательности.

Вторичные области имеют значительную важность в реализации взаимных связей раздражителей, которые выделяются при помощи первичных зон коры. Помимо этого, значительную роль они играют в интеграции функций, которые осуществляют ядерные поля разных анализаторов в результате объединения в сложные комплексы рецепций.

Таким образом, вторичные зоны представляют особую важность для реализации психических процессов в более сложных формах, которые требуют координации и которые связаны с подробным анализом соотношений между предметными раздражителями. В ходе этого процесса устанавливаются специфические связи, которые носят название ассоциативных. Афферентные импульсы, поступающие в кору от рецепторов разных внешних органов чувств, достигают вторичных полей посредством множества дополнительных переключений в ассоциативном ядре таламуса, который также называется зрительным бугром. Афферентные импульсы, следующие в первичные зоны, в отличие от импульсов, следуют во вторичные зоны, достигают их путем, который короче. Он реализован посредством реле-ядра, в зрительном бугре.

Мы разобрались, за что отвечает кора головного мозга.

Что такое таламус?

От таламических ядер к каждой доле мозговых полушарий подходят волокна. Таламус является зрительным бугром, расположенным в центральной части переднего отдела мозга, состоит из большого количества ядер, каждое из которых осуществляет передачу импульса в определенные участки коры.

Все сигналы, которые поступают к коре (исключение составляют только обонятельные), проходят через релейные и интегративные ядра зрительного бугра. От ядер таламуса волокна направляются к сенсорным зонам. Вкусовая и соматосенсорная зоны расположены в теменной доле, слуховая сенсорная зона - в височной доле, зрительная - в затылочной.

Импульсы к ним поступают, соответственно, от вентро-базальных комплексов, медиальных и латеральных ядер. Моторные зоны связаны с вентеральным и вентролатеральным ядрами таламуса.

Десинхронизация ЭЭГ

Что произойдет, если на человека, находящегося в состоянии полного покоя, подействует очень сильный раздражитель? Естественно, что человек полностью сконцентрируется на данном раздражителе. Переход умственной деятельности, который осуществляется от состояния покоя к состоянию активности, отражается на ЭЭГ бета-ритмом, который замещает альфа-ритм. Колебания становятся более частыми. Такой переход называют десинхронизацией ЭЭГ, появляется он в результате поступления сенсорного возбуждения в кору от неспецифических ядер, расположенных в таламусе.

Активирующая ретикулярная система

Диффузную нервную сесть составляют неспецифические ядра. Находится эта система в медиальных отделах таламуса. Он является передним отделом активирующей ретикулярной системы, регулирующей возбудимость коры. Разнообразные сенсорные сигналы способны активировать данную систему. Сенсорные сигналы могут быть как зрительными, так и обонятельными, соматосенсорными, вестибулярными, слуховыми. Активизирующая ретикулярная система представляет собой канал, который передает к поверхностному слою коры данные сигналов через расположенные в таламусе неспецифические ядра. Возбуждение АРС необходимо для того, чтобы человек был способен поддерживать состояние бодрствования. Если в данной системе возникают нарушения, то могут наблюдаться коматозные сноподобные состояния.

Третичные зоны

Между анализаторами коры головного мозга имеются функциональные отношения, которые имеют еще более сложную структуру, чем та, что была описана выше. В процессе роста происходит взаимное перекрытие полей анализаторов. Такие зоны перекрытия, которые образуются у концов анализаторов, носят название третичных зон. Они являются самыми сложными типами объединения деятельности слухового, зрительного, кожно-кинестетического анализаторов. Расположены третичные зоны за границами собственных зон анализаторов. В связи с этим повреждение их не оказывает выраженного эффекта.

Третичные зоны представляют собой особые корковые области, в которых собраны рассеянные элементы разных анализаторов. Они занимают весьма обширную территорию, которая разделена на области.

Верхняя теменная область интегрирует движения всего тела с анализатором зрительным, формирует схему тел. Нижняя теменная область объединяет обобщенные формы сигнализации, которые связаны с дифференцированными предметными и речевыми действиями.

Не менее важной является височно-теменно-затылочная область. Отвечает она за усложненные интеграции слухового и зрительного анализаторов с устной и письменной речью.

Стоит отметить, что по сравнению с двумя первыми зонами, для третичных характерны наиболее сложные цепи взаимодействия.

Если опираться на весь изложенный выше материал, то можно сделать вывод о том, что первичные, вторичные, третичные зоны коры у человека носят высокую специализацию. Отдельно стоит подчеркнуть тот факт, что все три корковые зоны, которые мы рассматривали, в нормально функционирующем мозге совместно с системами связей и образованиями подкоркового расположения функционируют как единое дифференцированное целое.

Мы подробно рассмотрели зоны и отделы коры головного мозга.

Деятельность коры полушарий головного мозга

Деятельность коры больших полушарий головного мозга осуществляется при взаимодействии двух основных нервных процессов - возбуждения и торможения, которые лежат в основе образования, и усвоения условных рефлексов. Эти процессы под влиянием внешних или внутренних воздействий могут усиливаться или ослабляться, охватывать большие или меньшие участки коры головного мозга.

Распространение в коре головного мозга процессов возбуждения или торможения называется иррадиацией.

Охват этими процессами все меньшего количества нервных центров коры носит название концентрации.

Возбуждение или торможение в одном участке коры сопровождается возникновением обратного процесса в другом участке, что называется отрицательной индукцией.

Возбудимость одного и того же участка коры головного мозга понижается, после возбуждения и повышается после процессов торможения. Это явление называется последовательной индукцией.

В основе учения И. П. Павлова о рефлекторной природе деятельно­сти центральной нервной системы лежат три основных принципа: принцип детерминизма, принцип единства анализа и синтеза и принцип структурности.

Принцип детерминизма. В природе, в том числе в живом организме, ничто не совершается без причины. Любой рефлекторный акт имеет причину. Это одно из основных положений диалектического материализма.

Принцип единства анализа и синтеза. Нервная система в процесс? всей деятельности непрерывно расчленяет сложные раздражители, действующие на органы чувств человека, на более простые составные элементы (анализ) и тут же объединяет их в соответствующие обстановке системы (синтез).

Принцип структурности. Любой рефлекторный акт связан с опре­деленной областью коры головного мозга. Все процессы, протекающие в головном мозге, как и во всем организме, материальны, в их основе лежат материальные процессы, протекающие в определенных частях нервной системы.

Всю информацию, которая необходима водителю для надежного управления автомобилем, он получает с помощью анализаторов. Каждый анализатор состоит из трех отделов. Первый отдел - наружный, воспринимающий аппарат, в котором происходит превращение энергии воздействующего раздражителя в нервный процесс. Это наружные анатомические образования, или органы чувств (глаз, ухо, нос и др.). Второй от дел - это чувствительные нервы, по которым воздействующее раздраже­ние передается в соответствующий центр головного мозга. Третий отдел и есть такой центр, который представляет собой специализированный участок коры головного мозга, превращающий нервные раздражения в соответствующее ощущение (зрительное, звуковое, вкусовое, тепловое и т. д.). Так, например, в зрительном анализаторе первым, наружным отделом является внутренняя оболочка глазного яблока (сетчатка), состоящая из светочувствительных клеток - колбочек и палочек. Раздражение этих клеток, передаваемое по зрительному нерву в центр зрительного анализатора, дает ощущение света, цвета и зрительное восприятие предметов внешнего мира. Аналогично устроены и другие анализаторы: слуховой, кожный, обонятельный, вестибулярный и двигательный. Центральные отделы анализаторов расположены в различных областях коры головного мозга. Так, например, центр зрительного анализатора находится в затылочной области, слухового - в височной, двигательного - в центральной извилине мозга и т. д.

Кроме специфических свойств анализаторы имеют и общие свойства. Общим свойством анализаторов является их высокая возбудимость, которая выражается в возникновении очага возбуждения в коре головного мозга даже при небольшой силе раздражителя. Всем анализаторам присуща иррадиация возбуждения, когда возбуждение из центра анализатора распространяется на соседние участки коры головного мозга. Следующей общей особенностью анализаторов является адаптация, т. е. способность в большом диапазоне воспринимать раздражители различной силы. Например, при входе в темный зал человек вначале ничего не видит, а затем довольно хорошо различает не только очертания предметов, но и лица. Вода кажется горячей только в первый момент погружения в ванну, неприятный запах быстро перестает ощущаться и т. д. Приспособление анализаторов к раздражителям выражается как в повышении чувствительности (темновая адаптация), так и в понижении (световая адаптация). Анализаторы обладают способностью некоторое время сохранять процесс возбуждения и восприятия после прекращения действия раздражителя. Если быстро перемещать в темноте светящийся уголек, то вместо движущейся точки будет видна сплошная светящаяся полоса. Кроме того, всем анализаторам свойственна своя специфическая память.

Анализаторы

Различают внешние и внутренние анализаторы. Внешние анализаторы воспринимают информацию из окружающей среды. К ним относятся: зрительный, слуховой, обонятельный, вкусовой, осязательный, или тактильный, реагирующий на прикосновение или давление. Внутренние анализаторы воспринимают раздражение со стороны внутренней среды организма. К ним относятся: мыгиечно-двигательный, оценивающий положение тела в пространстве, взаимное расположение частей тела, воспринимающий напряжение и сокращение мышц; баростезический, реагирующий на изменение кровяного давления, и др. Температурный, болевой и вестибулярный анализаторы могут возбуждаться при действии раздражителей внешней и внутренней среды.

Наибольшее значение в деятельности водителя имеют зрительным, слуховой, вестибулярный, мышечно-двигательный и кожный анализаторы.

Установлено, что от 80 до 90 % информации от окружающего мира поступает в мозг через зрительный анализатор. Стенка глаза состоит из трех оболочек. Наружная оболочка называется белковой, или склерой. В передней части глазного яблока она переходит в прозрачную роговицу, через которую в глаз проникают лучи света. Позади роговицы находится радужная оболочка, играющая роль диафрагмы. В центре радужной обо­лочки имеется отверстие - зрачок. Позади зрачка расположен хрусталик, имеющий форму двояковыпуклой линзы. За хрусталиком находится же­леобразное стекловидное тело, заполняющее всю полость глаза.

Лучи света, проникая через прозрачные, преломляющие среды глаза (роговицу, хрусталик, стекловидное тело), попадают на внутреннюю обо­лочку глаза - сетчатку, которая является аппаратом, воспринимающим световые лучи. К сетчатке подходят окончания зрительного нерва, передающего зрительные импульсы в головной мозг. В сетчатке имеется два типа клеток, воспринимающих световые раздражения: палочки и колбочки. Дневное зрение осуществляется в основном клетками малой чувствительности - колбочками, палочки при этом не возбуждаются. В темное время суток начинают функционировать палочки, которые обеспечивают зрительное восприятие в условиях низкой освещенности.



У животных, ведущих дневной образ жизни, в сетчатке преобладают колбочки, а у ночных животных (совы, летучие мыши) - палочки. В состав палочек входит особое химическое вещество - зрительный пурпур, или родопсин. Слабый свет вызывает распад родопсина. Продукты этого распада возбуждают палочки, а затем возбуждение по зрительному нерву передается в кору больших полушарий. Так возникает ощущение света. В состав родопсина входит витамин А. При его недостатке зрительный пурпур не синтезируется, и человек с наступлением сумерек перестает видеть. Такое состояние называется куриной слепотой, которая особенно опасна для водителя при управлении автомобилем в темное время суток. Смешивая в разных сочетаниях три основных цвета: красный, зеленый и синий, можно получить разнообразие цветов. Это явление и легло в основу теории цветового зрения, согласно которой в сетчатке имеются колбочки трех видов. Одни возбуждаются красным цветом, другие зеленым, третьи синим. Комбинация же различной степени возбуждения в трех видах колбочек дает все остальные цвета. При равномерном раздражении всех колбочек возникает ощущение белого цвета

Слуховой анализатор воспринимает звуки различной высоты, силы и продолжительности. Орган слуха состоит из трех частей: наружного, среднего и внутреннего уха. Наружное ухо представлено ушной раковиной и наружным слуховым проходом длиной 2,5 см. Между слуховым проходом и полостью среднего уха расположена барабанная перепонка толщиной 0,1 мм. Благодаря своей упругости барабанная перепонка способна без искажений повторить колебания воздуха. В полости среднего уха находятся три слуховые косточки: молоточек, наковальня и стремечко. Косточки передают колебания барабанной перепонки улитке (так называемся узкий изогнутый костный канал). Полость среднего уха специальным каналом - евстахиевой трубой - соединена с носоглоткой. При помощи евстахиевой трубы в среднем ухе поддерживается давление, равное атмосферному, что обеспечивает неискаженное колебание барабанной перепонки. Эти колебания передаются в кортиев орган внутреннего уха, который расположен в улитке. Кортиев орган имеет основную мембрану, на которой натянуты тончайшие волокна. Таких волокон около 24 тысяч. Звуковые волны вызывают колебания волокон, возбуждающие окончания слухового нерва. Это возбуждение передается в височную область коры головного мозга и воспринимается как ощущение звука. Согласно теории слуха, волокна широкой частью улитки в области вершины натянуты слабо и воспринимают низкие тона. Короткие и сильно натяну­тые волокна у основания улитки реагируют колебанием на высокие тона. Вестибулярный анализатор принимает участие в восприятии дви­жения и положения тела. Периферическую часть вестибулярного анализатора составляют преддверие и полукружные каналы, которые расположены тоже во внутреннем ухе. Преддверие представляет собой небольшую полость, по обеим сторонам которой находятся улитка и три полукружных канала. Полукружные каналы располагаются в трех взаимно перпендикулярных плоскостях и своими концами открываются в полости преддверия. В этой части каждого канала находятся чувствительные окончания (рецепторы) вестибулярного нерва. При движении или изменении положения тела эти окончания раздражаются перемещением находящейся в канале жидкости, которая называется эндолимфой. Возбуждение передается в кору головного мозга и воспринимается как движение или изменение положения тела в пространстве. Значительное раздражение вестибулярного аппарата происходит при качке на море, болтанке в воздухе и при езде на автомобиле. В результате такого укачивания развивается морская или воздушная болезнь, при которой появляется головная боль, головокружение, общая слабость, потливость, тошнота и рвота. Такое состояние чаще возникает у пассажиров и очень редко у водителей автомобилей.

Мышечно-двигательный анализатор имеет исключительно большое значение в деятельности водителя автомобиля, так как он осуществляет контроль за правильностью и точностью выполняемых движений. В мышцах и суставах имеются чувствительные нервные клетки, которые называются проприорецепторами. При сокращении мышц, изменении положения тела эти клетки посылают в кору головного мозга импульсы, сигнализирующие о сокращении или расслаблении мышц, о малейших изменениях положения любой части тела в пространстве.

Благодаря такой информации можно с закрытыми глазами опреде­лить, в каком положении находятся конечности и корпус. Что касается водителя, то с помощью двигательного анализатора он мгновенно получает информацию о малейшем отклонении автомобиля, а также о положении органов управления. Эта информация имеет огромное значение для своевременных управляющих действий водителя в опасных дорожных ситуациях. Двигательный анализатор играет ведущую роль в образовании новых движений, в формировании и совершенствовании двигательных водительских навыков. Под влиянием профессиональной тренировки повышается возбудимость, а следовательно, и чувствительность двигательного анализатора, что позволяет получать от него все более точную информацию, необходимую для надежного управления автомобилем. Автоматизация двигательных навыков позволяет разгрузить внимание водителя, что очень важно для безопасности дорожного движения.

Кожный анализатор реагирует на болевые, температурные и тактильные раздражители. Тактильные раздражители дают водителю дополнительную информацию об изменении скорости или направления движения автомобиля.

Все анализаторы играют важную роль в деятельности водителя, и нарушение их функций может резко снизить их надежность.

Контрольные вопросы

1. Расскажите о роли анатомии и физиологии человека в инженерной " психологии.

2. На какие виды делится нервная система человека?

3. Что называется рефлексом?

4. Что такое иррадиация?

5.Расскажите о значении в деятельности водителя зрительного, слухового, вестибулярного, мышечно-двигательного и кожного анализаторов

Ощущение и восприятие водителя автомобиля

Цель – дать понятие ощущения и восприятия.

1. Психические процессы получения информации.

2. Зрительное восприятие водителя.

3. Восприятие времени.

4. Двигательное восприятие.

5. Восприятие звуков.

6. Иллюзии и галлюцинации.