Расстояние между параллельными прямыми примеры. Простейшие задачи с прямой на плоскости. Взаимное расположение прямых. Угол между прямыми

  • 22.09.2019

С помощю этого онлайн калькулятора можно найти расстояние между прямыми в пространстве. Дается подробное решение с пояснениями. Для вычисления расстояния между прямыми в пространстве, задайте вид уравнения прямых ("канонический" или "параметрический"), введите коэффициенты уравнений прямых в ячейки и нажимайте на кнопку "Решить".

×

Предупреждение

Очистить все ячейки?

Закрыть Очистить

Инструкция ввода данных. Числа вводятся в виде целых чисел (примеры: 487, 5, -7623 и т.д.), десятичных чисел (напр. 67., 102.54 и т.д.) или дробей. Дробь нужно набирать в виде a/b, где a и b (b>0) целые или десятичные числа. Примеры 45/5, 6.6/76.4, -7/6.7 и т.д.

Расстояние между прямыми в пространстве − теория, примеры и решения

Пусть задана декартова прямоугольная система координат Oxyz L 1 и L 2:

. (1)
, (2)

где M 1 (x 1 , y 1 , z 1) и M 2 (x 2 , y 2 , z 2) − точки, лежащие на прямых L 1 и L 2 , а q 1 ={m 1 , p 1 , l 1 } и q 2 ={m 2 , p 2 , l 2 } − направляющие векторы прямых L 1 и L 2 , соответственно.

Прямые (1) и (2) в пространстве могут совпадать, быть паралленьными, пересекаться, или быть скрещивающимся. Если прямые в пространстве пересекаются или совпадают, то расстояние между ними равно нулю. Мы рассмотрим два случая. Первый − прямые параллельны, и второй − прямые скрещиваются. Остальные являются частыми случаями. Если при вычислении расстояния между параллельными прямыми мы получим расстояние равным нулю, то это значит, что эти прямые совпадают. Если же расстояние между скрещивающимися прямыми равно нулю, то эти прямые пересекаются.

1. Расстояние между параллельными прямыми в пространстве

Рассмотрим два метода вычисления расстояния между прямыми.

Метод 1. От точки M 1 прямой L 1 проводим плоскость α , перпендикулярно прямой L 2 . Находим точку M 3 (x 3 , y 3 , y 3) пересечения плоскости α и прямой L 3 . По сути мы находим проекцию точки M 1 на прямую L 2 . Как найти проекцию точки на прямую посмотрите . Далее вычисляем расстояние между точками M 1 (x 1 , y 1 , z 1) и M 3 (x 3 , y 3 , z 3):

Пример 1. Найти расстояние между прямыми L 1 и L 2:

Прямая L 2 проходит через точку M 2 (x 2 , y 2 , z 2)=M

Подставляя значения m 2 , p 2 , l 2 , x 1 , y 1 , z 1 в (5) получим:

Найдем точку пересечения прямой L 2 и плоскости α , для этого построим параметрическое уравнение прямой L 2 .

Чтобы найти точку пересечения прямой L 2 и плоскости α , подставим значения переменных x , y , z из (7) в (6):

Подставляя полученное значение t в (7), получим точку пересеченияпрямой L 2 и плоскости α :

Остается найти расстояние между точками M 1 и M 3:

L 1 и L 2 равно d =7.2506.

Метод 2. Найдем расстояние между прямыми L 1 и L 2 (уравнения (1) и (2)). Во первых, проверяем параллельность прямых L 1 и L 2 . Если направляющие векторы прямых L 1 и L 2 коллинеарны, т.е. если существует такое число λ, что выполнено равенство q 1 =λ q 2 , то прямые L 1 и L 2 параллельны.

Данный метод вычисления расстояния между параллельными векторами основана на понятии векторного произведения векторов. Известно, что норма векторного произведения векторов и q 1 дает площадь параллелограмма, образованного этими векторами (Рис.2). Узнав площадь параллелограмма, можно найти вершину параллелограмма d , разделив площадь на основание q 1 параллелограмма.

q 1:

.

Расстояние между прямыми L 1 и L 2 равно:

,
,

Пример 2. Решим пример 1 методом 2. Найти расстояние между прямыми

Прямая L 2 проходит через точку M 2 (x 2 , y 2 , z 2)=M 2 (8, 4, 1) и имеет направляющий вектор

q 2 ={m 2 , p 2 , l 2 }={2, −4, 8}

Векторы q 1 и q 2 коллинеарны. Следовательно прямые L 1 и L 2 параллельны. Для вычисления расстояния между параллельными прямыми воспользуемся векторным произведением векторов.

Построим вектор ={x 2 −x 1 , y 2 −y 1 , z 2 −z 1 }={7, 2, 0}.

Вычислим векторное произведение векторов и q 1 . Для этого составим 3×3 матрицу, первая строка которой базисные векторы i, j, k , а остальные строки заполнены элементами векторов и q 1:

Таким образом, результатом векторного произведения векторов и q 1 будет вектор:

Ответ: Расстояние между прямыми L 1 и L 2 равно d =7.25061.

2. Расстояние между скрещивающимися прямыми в пространстве

Пусть задана декартова прямоугольная симтема координат Oxyz и пусть в этой системе координат заданы прямые L 1 и L 2 (уравнения (1) и (2)).

Пусть прямые L 1 и L 2 не параллельны (паралельные прямые мы расстотрели в предыдущем параграфе). Чтобы найти расстояние между прямыми L 1 и L 2 нужно построить параллельные плоскости α 1 и α 2 так, чтобы прямая L 1 лежал на плоскости α 1 а прямая L 2 − на плоскости α 2 . Тогда расстояние между прямыми L 1 и L 2 равно расстоянию между плоскостями L 1 и L 2 (Рис. 3).

где n 1 ={A 1 , B 1 , C 1 } − нормальный вектор плоскости α 1 . Для того, чтобы плоскость α 1 проходила через прямую L 1 , нормальный вектор n 1 должен быть ортогональным направляющему вектору q 1 прямой L 1 , т.е. скалярное произведение этих векторов должен быть равным нулю:

Решая систему линейных уравнений (27)−(29), с тремя уравнениями и четыремя неизвестными A 1 , B 1 , C 1 , D 1 , и подставляя в уравнение

Плоскости α 1 и α 2 параллельны, следовательно полученные нормальные векторыn 1 ={A 1 , B 1 , C 1 } и n 2 ={A 2 , B 2 , C 2 } этих плоскостей коллинеарны. Если эти векторы не равны, то можно умножить (31) на некторое число так, чтобы полученный нормальный вектор n 2 совпадал с нормальным вектором уравнения (30).

Тогда расстояние между параллельными плоскостями вычисляется формулой:

(33)

Решение. Прямая L 1 проходит через точку M 1 (x 1 , y 1 , z 1)=M 1 (2, 1, 4) и имеет направляющий вектор q 1 ={m 1 , p 1 , l 1 }={1, 3, −2}.

Прямая L 2 проходит через точку M 2 (x 2 , y 2 , z 2)=M 2 (6, −1, 2) и имеет направляющий вектор q 2 ={m 2 , p 2 , l 2 }={2, −3, 7}.

Построим плоскость α 1 , проходящую через прямую L 1 , параллельно прямой L 2 .

Поскольку плоскость α 1 проходит через прямую L 1 , то она проходит также через точку M 1 (x 1 , y 1 , z 1)=M 1 (2, 1, 4) и нормальный вектор n 1 ={m 1 , p 1 , l 1 } плоскости α 1 перпендикулярна направляющему вектору q 1 прямой L 1 . Тогда уравнение плоскости должна удовлетворять условию:

Так как плоскость α 1 должна быть параллельной прямой L 2 , то должна выполнятся условие:

Представим эти уравнения в матричном виде:

(40)

Решим систему линейных уравнений (40) отностительно A 1 , B 1 , C 1 , D 1.

В материале этой статьи разберем вопрос нахождения расстояния между двумя параллельными прямыми, в частности, при помощи метода координат. Разбор типовых примеров поможет закрепить полученные теоретические знания.

Yandex.RTB R-A-339285-1 Определение 1

Расстояние между двумя параллельными прямыми – это расстояние от некоторой произвольной точки одной из параллельных прямых до другой прямой.

Приведем иллюстрацию для наглядности:

На чертеже изображены две параллельные прямые a и b . Точка М 1 принадлежит прямой a , из нее опущен перпендикуляр на прямую b . Полученный отрезок М 1 Н 1 и есть расстояние между двумя параллельными прямыми a и b .

Указанное определение расстояния между двумя параллельными прямыми справедливо как на плоскости, так и для прямых в трехмерном пространстве. Кроме того, данное определение взаимосвязано со следующей теоремой.

Теорема

Когда две прямые параллельны, все точки одной из них равноудалены от другой прямой.

Доказательство

Пусть нам заданы две параллельные прямые a и b . Зададим на прямой а точки М 1 и М 2 , опустим из них перпендикуляры на прямую b , обозначив их основания соответственно как Н 1 и Н 2 . М 1 Н 1 – это расстояние между двумя параллельными прямыми по определению, и нам необходимо доказать, что | М 1 Н 1 | = | М 2 Н 2 | .

Пусть будет также существовать некоторая секущая, которая пересекает две заданные параллельные прямые. Условие параллельности прямых, рассмотренное в соответствующей статье, дает нам право утверждать, что в данном случае внутренние накрест лежащие углы, образованные при пересечении секущей заданных прямых, являются равными: ∠ M 2 M 1 H 2 = ∠ H 1 H 2 M 1 . Прямая М 2 Н 2 перпендикулярна прямой b по построению, и, конечно, перпендикулярна прямой a . Получившиеся треугольники М 1 Н 1 Н 2 и М 2 М 1 Н 2 являются прямоугольными и равными друг другу по гипотенузе и острому углу: М 1 Н 2 – общая гипотенуза, ∠ M 2 M 1 H 2 = ∠ H 1 H 2 M 1 . Опираясь на равенство треугольников, мы можем говорить о равенстве их сторон, т.е.: | М 1 Н 1 | = | М 2 Н 2 | . Теорема доказана.

Отметим, что расстояние между двумя параллельными прямыми – наименьшее из расстояний от точек одной прямой до точек другой.

Нахождение расстояния между параллельными прямыми

Мы уже выяснили, что, по сути, чтобы найти расстояние между двумя параллельными прямыми, необходимо определить длину перпендикуляра, опущенного из некой точки одной прямой на другую. Способов, как это сделать, несколько. В каких-то задачах удобно воспользоваться теоремой Пифагора; другие предполагают использование признаков равенства или подобия треугольников и т.п. В случаях, когда прямые заданы в прямоугольной системе координат, возможно вычислить расстояние между двумя параллельными прямыми, используя метод координат. Рассмотрим его подробнее.

Зададим условия. Допустим, зафиксирована прямоугольная система координат, в которой заданы две параллельные прямые a и b . Необходимо определить расстояние между заданными прямыми.

Решение задачи построим на определении расстояния между параллельными прямыми: для нахождения расстояния между двумя заданными параллельными прямыми необходимо:

Найти координаты некоторой точки М 1 , принадлежащей одной из заданных прямых;

Произвести вычисление расстояния от точки М 1 до заданной прямой, которой эта точка не принадлежит.

Опираясь на навыки работы с уравнениями прямой на плоскости или в пространстве, определить координаты точки М 1 просто. При нахождении расстояния от точки М 1 до прямой пригодится материал статьи о нахождении расстояния от точки до прямой.

Вернемся к примеру. Пусть прямая a описывается общим уравнением A x + B y + C 1 = 0 , а прямая b – уравнением A x + B y + C 2 = 0 . Тогда расстояние между двумя заданными параллельными прямыми возможно вычислить, используя формулу:

M 1 H 1 = C 2 - C 1 A 2 + B 2

Выведем эту формулу.

Используем некоторую точку М 1 (x 1 , y 1) , принадлежащую прямой a . В таком случае координаты точки М 1 будут удовлетворять уравнению A x 1 + B y 1 + C 1 = 0 . Таким образом, справедливым является равенство: A x 1 + B y 1 + C 1 = 0 ; из него получим: A x 1 + B y 1 = - C 1 .

Когда С 2 < 0 , нормальное уравнение прямой b будет иметь вид:

A A 2 + B 2 x + B A 2 + B 2 y + C 2 A 2 + B 2 = 0

При С 2 ≥ 0 нормальное уравнение прямой b будет выглядеть так:

A A 2 + B 2 x + B A 2 + B 2 y - C 2 A 2 + B 2 = 0

И тогда для случаев, когда С 2 < 0 , применима формула: M 1 H 1 = A A 2 + B 2 x 1 + B A 2 + B 2 y 1 + C 2 A 2 + B 2 .

А для С 2 ≥ 0 искомое расстояние определяется по формуле M 1 H 1 = - A A 2 + B 2 x 1 - B A 2 + B 2 y 1 - C 2 A 2 + B 2 = = A A 2 + B 2 x 1 + B A 2 + B 2 y 1 + C 2 A 2 + B 2

Таким образом, при любом значении числа С 2 длина отрезка | М 1 Н 1 | (от точки М 1 до прямой b) вычисляется по формуле: M 1 H 1 = A A 2 + B 2 x 1 + B A 2 + B 2 y 1 + C 2 A 2 + B 2

Выше мы получили: A x 1 + B y 1 = - C 1 , тогда можем преобразовать формулу: M 1 H 1 = - C 1 A 2 + B 2 + C 2 A 2 + B 2 = C 2 - C 1 A 2 + B 2 . Так мы, собственно, получили формулу, указанную в алгоритме метода координат.

Разберем теорию на примерах.

Пример 1

Заданы две параллельные прямые y = 2 3 x - 1 и x = 4 + 3 · λ y = - 5 + 2 · λ . Необходимо определить расстояние между ними.

Решение

Исходные параметрические уравнения дают возможность задать координаты точки, через которую проходит прямая, описываемая параметрическими уравнениями. Таким образом, получаем точку М 1 (4 , - 5) . Требуемое расстояние – это расстояние между точкой М 1 (4 , - 5) до прямой y = 2 3 x - 1 , произведем его вычисление.

Заданное уравнение прямой с угловым коэффициентом y = 2 3 x - 1 преобразуем в нормальное уравнение прямой. С этой целью сначала осуществим переход к общему уравнению прямой:

y = 2 3 x - 1 ⇔ 2 3 x - y - 1 = 0 ⇔ 2 x - 3 y - 3 = 0

Вычислим нормирующий множитель: 1 2 2 + (- 3) 2 = 1 13 . Умножим на него обе части последнего уравнения и, наконец, получим возможность записать нормальное уравнение прямой: 1 13 · 2 x - 3 y - 3 = 1 13 · 0 ⇔ 2 13 x - 3 13 y - 3 13 = 0 .

При x = 4 , а y = - 5 вычислим искомое расстояние как модуль значения крайнего равенства:

2 13 · 4 - 3 13 · - 5 - 3 13 = 20 13

Ответ: 20 13 .

Пример 2

В фиксированной прямоугольной системе координат O x y заданы две параллельные прямые, определяемые уравнениями x - 3 = 0 и x + 5 0 = y - 1 1 . Необходимо найти расстояние между заданными параллельными прямыми.

Решение

Условиями задачи определено одно общее уравнение, задаваемое одну из исходных прямых: x-3=0. Преобразуем исходное каноническое уравнение в общее: x + 5 0 = y - 1 1 ⇔ x + 5 = 0 . При переменной x коэффициенты в обоих уравнениях равны (также равны и при y – нулю), а потому имеем возможность применить формулу для нахождения расстояния между параллельными прямыми:

M 1 H 1 = C 2 - C 1 A 2 + B 2 = 5 - (- 3) 1 2 + 0 2 = 8

Ответ : 8 .

Напоследок рассмотрим задачу на нахождение расстояния между двумя параллельными прямыми в трехмерном пространстве.

Пример 3

В прямоугольной системе координат O x y z заданы две параллельные прямые, описываемые каноническими уравнениями прямой в пространстве: x - 3 1 = y - 1 = z + 2 4 и x + 5 1 = y - 1 - 1 = z - 2 4 . Необходимо найти расстояние между этими прямыми.

Решение

Из уравнения x - 3 1 = y - 1 = z + 2 4 легко определются координаты точки, через которую проходит прямая, описываемая этим уравнением: М 1 (3 , 0 , - 2) . Произведем вычисление расстояния | М 1 Н 1 | от точки М 1 до прямой x + 5 1 = y - 1 - 1 = z - 2 4 .

Прямая x + 5 1 = y - 1 - 1 = z - 2 4 проходит через точку М 2 (- 5 , 1 , 2) . Запишем направляющий вектор прямой x + 5 1 = y - 1 - 1 = z - 2 4 как b → с координатами (1 , - 1 , 4) . Определим координаты вектора M 2 M → :

M 2 M 1 → = 3 - (- 5 , 0 - 1 , - 2 - 2) ⇔ M 2 M 1 → = 8 , - 1 , - 4

Вычислим векторное произведение векторов:

b → × M 2 M 1 → = i → j → k → 1 - 1 4 8 - 1 - 4 = 8 · i → + 36 · j → + 7 · k → ⇒ b → × M 2 M 1 → = (8 , 36 , 7)

Применим формулу расчета расстояния от точки до прямой в пространстве:

M 1 H 1 = b → × M 2 M 1 → b → = 8 2 + 36 2 + 7 2 1 2 + (- 1) 2 + 4 2 = 1409 3 2

Ответ: 1409 3 2 .

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Наряду с точкой и плоскостью. Это бесконечная фигура, которой можно соединить любые две точки в пространстве. Прямая всегда принадлежит какой-либо плоскости. Исходя из расположения двух прямых, следует применять разные методы поиска расстояния между ними.

Существует три варианта расположения двух прямых в пространстве друг относительно друга: они параллельны, пересекаются или . Второй вариант возможен, только если они в одной плоскости, не исключает принадлежности двум параллельным плоскостям. Третья ситуация говорит о том, что прямые лежат в разных параллельных плоскостях.

Чтобы найти расстояние между двумя параллельными прямыми, нужно определить длину перпендикулярного отрезка, соединяющего их в любых двух точках. Поскольку прямые имеют две одинаковые координаты, что следует из определения их параллельности, то уравнения прямых в двухмерном координатном пространстве можно записать так:
L1: а х + b у + с = 0;
L2: а х + b у + d = 0.
Тогда можно найти длину отрезка по формуле:
s = |с - d|/√(a² + b²), причем нетрудно заметить, что при С = D, т.е. совпадении прямых, расстояние будет равно нулю.

Понятно, что расстояние между пересекающимися прямыми в двухмерной координат не имеет смысла. Зато когда они расположены в разных плоскостях, его можно найти как длину отрезка, лежащего в плоскости, перпендикулярной им обеим. Концами этого отрезка будут точки, являющиеся проекциями любых двух точек прямых на эту плоскость. Иными , его длина равна расстоянию между параллельными плоскостями, содержащими эти прямые. Таким образом, если плоскости заданы общими уравнениями:
α: А1 х + В1 у + С1 z + Е = 0,
β: А2 х + В2 у + С2 z + F = 0,
расстояние между прямыми можно по формуле:
s = |Е – F|/√(|А1 А2| + В1 В2 + С1 С2).

Обратите внимание

Прямые вообще и скрещивающиеся в частности интересны не только математикам. Их свойства полезны во многих других областях: в строительстве и архитектуре, в медицине и в самой природе.

Совет 2: Как найти расстояние между двумя параллельными прямыми

Определение расстояния между двумя объектами, находящимися в одной или нескольких плоскостях, является одной из самых распространенных задач в геометрии. Руководствуясь общепринятыми методами, вы можете найти расстояние между двумя параллельными прямыми.

Инструкция

Параллельными называются прямые, лежащие в одной плоскости, которые либо не пересекаются, либо совпадают. Для нахождения расстояния между параллельными прямыми следует выбрать произвольную точку на одной из них, после чего опустить перпендикуляр ко второй прямой. Теперь остается лишь измерить длину получившегося отрезка. Длина соединяющего две параллельные прямые перпендикуляра и будет являться расстоянием между ними.

Обратите внимание на порядок проведения перпендикуляра от одной параллельной прямой к другой, поскольку от этого зависит точность рассчитанного расстояния. Для этого воспользуйтесь чертежным инструментом «треугольником» с прямым углом. Выберите точку на одной из прямых, приложите к ней одну из сторон треугольника, примыкающих к прямому углу (катет), а вторую сторону совместите с другой прямой. Остро заточенным карандашом проведите вдоль первого катета линию так, чтобы она достигла противоположной прямой.

Не прошло и минуты, как я создал новый вёрдовский файл и продолжил столь увлекательную тему. Нужно ловить моменты рабочего настроя, поэтому лирического вступления не будет. Будет прозаическая порка =)

Две прямые пространства могут:

1) скрещиваться;

2) пересекаться в точке ;

3) быть параллельными ;

4) совпадать.

Случай № 1 принципиально отличается от других случаев. Две прямые скрещиваются, если они не лежат в одной плоскости . Поднимите одну руку вверх, а другую руку вытяните вперёд – вот вам и пример скрещивающихся прямых. В пунктах же № 2-4 прямые обязательно лежат в одной плоскости .

Как выяснить взаимное расположение прямых в пространстве?

Рассмотрим две прямые пространства:

– прямую , заданную точкой и направляющим вектором ;
– прямую , заданную точкой и направляющим вектором .

Для лучшего понимания выполним схематический чертёж:

На чертеже в качестве примера изображены скрещивающиеся прямые.

Как разобраться с этими прямыми?

Так как известны точки , то легко найти вектор .

Если прямые скрещиваются , то векторы не компланарны (см. урок Линейная (не) зависимость векторов. Базис векторов ), а, значит, определитель, составленный из их координат, ненулевой. Или, что фактически то же самое, будет отлично от нуля: .

В случаях № 2-4 наша конструкция «падает» в одну плоскость, при этом векторы компланарны , а смешанное произведение линейно зависимых векторов равняется нулю: .

Раскручиваем алгоритм дальше. Предположим, что , следовательно, прямые либо пересекаются, либо параллельны, либо совпадают.

Если направляющие векторы коллинеарны , то прямые либо параллельны, либо совпадают. Финальным гвоздём предлагаю следующий приём: берём какую-либо точку одной прямой и подставляем её координаты в уравнение второй прямой; если координаты «подошли», то прямые совпадают, если «не подошли», то прямые параллельны.

Ход алгоритма незатейлив, но практические примеры всё равно не помешают:

Пример 11

Выяснить взаимное расположение двух прямых

Решение : как и во многих задачах геометрии, решение удобно оформить по пунктам:

1) Вытаскиваем из уравнений точки и направляющие векторы:

2) Найдём вектор:

Таким образом, векторы компланарны, а значит, прямые лежат в одной плоскости и могут пересекаться, быть параллельными или совпадать.

4) Проверим направляющие векторы на коллинеарность.

Составим систему из соответствующих координат данных векторов:

Из каждого уравнения следует, что , следовательно, система совместна, соответствующие координаты векторов пропорциональны, и векторы коллинеарны.

Вывод: прямые параллельны либо совпадают.

5) Выясним, есть ли у прямых общие точки. Возьмём точку , принадлежащую первой прямой, и подставим её координаты в уравнения прямой :

Таким образом, общих точек у прямых нет, и им ничего не остаётся, как быть параллельными.

Ответ :

Интересный пример для самостоятельного решения:

Пример 12

Выяснить взаимное расположение прямых

Это пример для самостоятельного решения. Обратите внимание, что у второй прямой в качестве параметра выступает буква . Логично. В общем случае – это же две различные прямые, поэтому у каждой прямой свой параметр.

И снова призываю не пропускать примеры, пороть буду предлагаемые мной задачи далеко не случайны;-)

Задачи с прямой в пространстве

В заключительной части урока я постараюсь рассмотреть максимальное количество различных задач с пространственными прямыми. При этом будет соблюдён начатый порядок повествования: сначала мы рассмотрим задачи со скрещивающимися прямыми, затем с пересекающимися прямыми, и в конце поговорим о параллельных прямых в пространстве. Однако должен сказать, что некоторые задачи данного урока можно сформулировать сразу для нескольких случаев расположения прямых, и в этой связи разбиение раздела на параграфы несколько условно. Есть более простые примеры, есть более сложные примеры, и, надеюсь, каждый найдёт то, что нужно.

Скрещивающиеся прямые

Напоминаю, что прямые скрещиваются, если не существует плоскости, в которой бы они обе лежали. Когда я продумывал практику, в голову пришла задача-монстр, и сейчас рад представить вашему вниманию дракона с четырьмя головами:

Пример 13

Даны прямые . Требуется:

а) доказать, что прямые скрещиваются;

б) найти уравнения прямой , проходящей через точку перпендикулярно данным прямым;

в) составить уравнения прямой , которая содержит общий перпендикуляр скрещивающихся прямых;

г) найти расстояние между прямыми.

Решение : Дорогу осилит идущий:

а) Докажем, что прямые скрещиваются. Найдём точки и направляющие векторы данных прямых:

Найдём вектор:

Вычислим смешанное произведение векторов :

Таким образом, векторы не компланарны , а значит, прямые скрещиваются, что и требовалось доказать.

Наверное, все уже давно подметили, что для скрещивающихся прямых алгоритм проверки получается короче всего.

б) Найдём уравнения прямой , которая проходит через точку и перпендикулярна прямым . Выполним схематический чертёж:

Для разнообразия я разместил прямую ЗА прямыми , посмотрите, как она немного стёрта в точках скрещивания. Скрещивания? Да, в общем случае прямая «дэ» будет скрещиваться с исходными прямыми. Хотя данный момент нас пока не интересует, надо просто построить перпендикулярную прямую и всё.

Что известно о прямой «дэ»? Известна принадлежащая ей точка . Не хватает направляющего вектора.

По условию прямая должна быть перпендикулярна прямым , а значит, её направляющий вектор будет ортогонален направляющим векторам . Уже знакомый из Примера № 9 мотив, найдём векторное произведение:

Составим уравнения прямой «дэ» по точке и направляющему вектору :

Готово. В принципе, можно сменить знаки в знаменателях и записать ответ в виде , но необходимости в этом нет никакой.

Для проверки необходимо подставить координаты точки в полученные уравнения прямой, затем с помощью скалярного произведения векторов убедиться, что вектор действительно ортогонален направляющим векторам «пэ один» и «пэ два».

Как найти уравнения прямой, содержащей общий перпендикуляр?

в) Эта задачка посложнее будет. Чайникам рекомендую пропустить данный пункт, не хочу охлаждать вашу искреннюю симпатию к аналитической геометрии =) Кстати, и более подготовленным читателям, возможно, лучше тоже повременить, дело в том, что по сложности пример надо бы поставить последним в статье, но по логике изложения он должен располагаться здесь.

Итак, требуется найти уравнения прямой , которая содержит общий перпендикуляр скрещивающихся прямых.

– это отрезок, соединяющий данные прямые и перпендикулярный данным прямым:

Вот наш красавец: – общий перпендикуляр скрещивающихся прямых . Он единственный. Другого такого нет. Нам же требуется составить уравнения прямой , которая содержит данный отрезок.

Что известно о прямой «эм»? Известен её направляющий вектор , найденный в предыдущем пункте. Но, к сожалению, мы не знаем ни одной точки, принадлежащей прямой «эм», не знаем и концов перпендикуляра – точек . Где эта перпендикулярная прямая пересекает две исходные прямые? В Африке, в Антарктиде? Из первоначального обзора и анализа условия вообще не видно, как решать задачу…. Но есть хитрый ход, связанный с использованием параметрических уравнений прямой.

Решение оформим по пунктам:

1) Перепишем уравнения первой прямой в параметрической форме:

Рассмотрим точку . Координат мы не знаем. НО . Если точка принадлежит данной прямой, то её координатам соответствует , обозначим его через . Тогда координаты точки запишутся в виде:

Жизнь налаживается, одна неизвестная – всё-таки не три неизвестных.

2) Такое же надругательство нужно осуществить над второй точкой. Перепишем уравнения второй прямой в параметрическом виде:

Если точка принадлежит данной прямой, то при вполне конкретном значении её координаты должны удовлетворять параметрическим уравнениям:

Или:

3) Вектор , как и ранее найденный вектор , будет направляющим вектором прямой . Как составить вектор по двум точкам, рассматривалось в незапамятные времена на уроке Векторы для чайников . Сейчас отличие состоит в том, что координаты векторов записаны с неизвестными значениям параметров. Ну и что? Никто же не запрещает из координат конца вектора вычесть соответствующие координаты начала вектора.

Есть две точки: .

Находим вектор:

4) Поскольку направляющие векторы коллинеарны, то один вектор линейно выражается через другой с некоторым коэффициентом пропорциональности «лямбда»:

Или покоординатно:

Получилась самая, что ни на есть обычная система линейных уравнений с тремя неизвестными , которая стандартно разрешима, например, методом Крамера . Но здесь есть возможность отделаться малой кровью, из третьего уравнения выразим «лямбду» и подставим её в первое и второе уравнение:

Таким образом: , а «лямбда» нам не потребуется. То, что значения параметров получились одинаковыми – чистая случайность.

5) Небо полностью проясняется, подставим найденные значения в наши точки:

Направляющий вектор особо не нужен, так как уже найден его коллега .

После длинного пути всегда интересно выполнить проверку.

:

Получены верные равенства.

Подставим координаты точки в уравнения :

Получены верные равенства.

6) Заключительный аккорд: составим уравнения прямой по точке (можно взять ) и направляющему вектору :

В принципе, можно подобрать «хорошую» точку с целыми координатами, но это уже косметика.

Как найти расстояние между скрещивающимися прямыми?

г) Срубаем четвёртую голову дракона.

Способ первый . Даже не способ, а небольшой частный случай. Расстояние между скрещивающимися прямыми равно длине их общего перпендикуляра: .

Крайние точки общего перпендикуляра найдены в предыдущем пункте, и задача элементарна:

Способ второй . На практике чаще всего концы общего перпендикуляра неизвестны, поэтому используют другой подход. Через две скрещивающиеся прямые можно провести параллельные плоскости, и расстояние между данными плоскостями равно расстоянию между данными прямыми. В частности, между этими плоскостями и торчит общий перпендикуляр.

В курсе аналитической геометрии из вышесказанных соображений выведена формула нахождения расстояния между скрещивающимися прямыми:
(вместо наших точек «эм один, два» можно взять произвольные точки прямых).

Смешанное произведение векторов уже найдено в пункте «а»: .

Векторное произведение векторов найдено в пункте «бэ»: , вычислим его длину:

Таким образом:

Гордо выложим трофеи в один ряд:

Ответ :
а) , значит, прямые скрещиваются, что и требовалось доказать;
б) ;
в) ;
г)

Что ещё можно рассказать про скрещивающиеся прямые? Между ними определён угол. Но универсальную формулу угла рассмотрим в следующем параграфе:

Пересекающиеся прямые пространства обязательно лежат в одной плоскости:

Первая мысль – всеми силами навалиться на точку пересечения . И сразу же подумалось, зачем себе отказывать в правильных желаниях?! Давайте навалимся на неё прямо сейчас!

Как найти точку пересечения пространственных прямых?

Пример 14

Найти точку пересечения прямых

Решение : Перепишем уравнения прямых в параметрической форме:

Данная задача подробно рассматривалась в Примере № 7 данного урока (см. Уравнения прямой в пространстве ). А сами прямые, к слову, я взял из Примера № 12. Врать не буду, новые лень придумывать.

Приём решения стандартен и уже встречался, когда мы вымучивали уравнения общего перпендикуляра скрещивающихся прямых.

Точка пересечения прямых принадлежит прямой , поэтому её координаты удовлетворяют параметрическим уравнениям данной прямой, и им соответствует вполне конкретное значение параметра :

Но эта же точка принадлежит и второй прямой, следовательно:

Приравниваем соответствующие уравнения и проводим упрощения:

Получена система трёх линейных уравнений с двумя неизвестными. Если прямые пересекаются (что доказано в Примере № 12), то система обязательно совместна и имеет единственное решение. Её можно решить методом Гаусса , но уж таким детсадовским фетишизмом грешить не будем, поступим проще: из первого уравнения выразим «тэ нулевое» и подставим его во второе и третье уравнение:

Последние два уравнения получились, по сути, одинаковыми, и из них следует, что . Тогда:

Подставим найденное значение параметра в уравнения:

Ответ :

Для проверки подставим найденное значение параметра в уравнения:
Получены те же самые координаты, что и требовалось проверить. Дотошные читатели могу подставить координаты точки и в исходные канонические уравнения прямых.

Кстати, можно было поступить наоборот: точку найти через «эс нулевое», а проверить – через «тэ нулевое».

Известная математический примета гласит: там, где обсуждают пересечение прямых, всегда пахнет перпендикулярами.

Как построить прямую пространства, перпендикулярную данной?

(прямые пересекаются)

Пример 15

а) Составить уравнения прямой, проходящей через точку перпендикулярно прямой (прямые пересекаются).

б) Найти расстояние от точки до прямой .

Примечание : оговорка «прямые пересекаются» – существенна . Через точку
можно провести бесконечно много перпендикулярных прямых, которые будут скрещиваться с прямой «эль». Единственное решение имеет место в случае, когда через данную точку проводится прямая, перпендикулярная двум заданным прямым (см. Пример № 13, пункт «б»).

а) Решение : Неизвестную прямую обозначим через . Выполним схематический чертёж:

Что известно о прямой ? По условию дана точка . Для того, чтобы составить уравнения прямой, необходимо найти направляющий вектор. В качестве такого вектора вполне подойдёт вектор , им и займемся. Точнее, возьмём за шкирку неизвестный конец вектора.

1) Вытащим из уравнений прямой «эль» её направляющий вектор , а сами уравнения перепишем в параметрической форме:

Многие догадались, сейчас уже в третий раз за урок фокусник достанет белого лебедя из шляпы. Рассмотрим точку с неизвестными координатами. Поскольку точка , то её координаты удовлетворяют параметрическим уравнениям прямой «эль» и им соответствует конкретное значение параметра:

Или одной строкой:

2) По условию прямые должны быть перпендикулярны, следовательно, их направляющие векторы – ортогональны. А если векторы ортогональны, то их скалярное произведение равно нулю:

Что получилось? Простейшее линейное уравнение с одной неизвестной:

3) Значение параметра известно, найдём точку:

И направляющий вектор:
.

4) Уравнения прямой составим по точке и направляющему вектору :

Знаменатели пропорции получились дробные, и это как раз тот случай, когда от дробей уместно избавиться. Я просто умножу их на –2:

Ответ :

Примечание : более строгая концовка решения оформляется так: составим уравнения прямой по точке и направляющему вектору . Действительно, если вектор является навправляющим вектором прямой, то коллинеарный ему вектор , естественно, тоже будет направляющим вектором данной прямой.

Проверка состоит из двух этапов:

1) проверяем направляющие векторы прямых на ортогональность;

2) подставляем координаты точки в уравнения каждой прямой, они должны «подходить» и там и там.

О типовых действиях говорилось очень много, поэтому я выполнил проверку на черновике.

Кстати, запамятовал ещё пунктик – построить точку «зю» симметричную точке «эн» относительно прямой «эль». Впрочем, есть хороший «плоский аналог», с которым можно ознакомиться в статье Простейшие задачи с прямой на плоскости . Здесь же всё отличие будет в дополнительной «зетовой» координате.

Как найти расстояние от точки до прямой в пространстве?

б) Решение : Найдём расстояние от точки до прямой .

Способ первый . Данное расстояние в точности равно длине перпендикуляра : . Решение очевидно: если известны точки , то:

Способ второй . В практических задачах основание перпендикуляра частенько тайна за семью печатями, поэтому рациональнее пользоваться готовой формулой.

Расстояние от точки до прямой выражается формулой:
, где – направляющий вектор прямой «эль», а – произвольная точка, принадлежащая данной прямой.

1) Из уравнений прямой достаём направляющий вектор и самую доступную точку .

2) Точка известна из условия, заточим вектор:

3) Найдём векторное произведение и вычислим его длину:

4) Рассчитаем длину направляющего вектора:

5) Таким образом, расстояние от точки до прямой:


В этой статье внимание нацелено на нахождение расстояния между скрещивающимися прямыми методом координат. Сначала дано определение расстояния между скрещивающимися прямыми. Далее получен алгоритм, позволяющий найти расстояние между скрещивающимися прямыми. В заключении детально разобрано решение примера.

Навигация по странице.

Расстояние между скрещивающимися прямыми – определение.

Прежде чем дать определение расстояния между скрещивающимися прямыми, напомним определение скрещивающихся прямых и докажем теорему, связанную со скрещивающимися прямыми.

Определение.

– это расстояние между одной из скрещивающихся прямых и параллельной ей плоскостью, проходящей через другую прямую.

В свою очередь расстояние между прямой и параллельной ей плоскостью есть расстояние от некоторой точки прямой до плоскости. Тогда справедлива следующая формулировка определения расстояния между скрещивающимися прямыми.

Определение.

Расстояние между скрещивающимися прямыми – это расстояние от некоторой точки одной из скрещивающихся прямых до плоскости, проходящей через другую прямую параллельно первой прямой.

Рассмотрим скрещивающиеся прямые a и b . Отметим на прямой a некоторую точку М 1 , через прямую b проведем плоскость , параллельную прямой a , и из точки М 1 опустим перпендикуляр М 1 H 1 на плоскость . Длина перпендикуляра M 1 H 1 есть расстояние между скрещивающимися прямыми a и b .

Нахождение расстояния между скрещивающимися прямыми – теория, примеры, решения.

При нахождении расстояния между скрещивающимися прямыми основная сложность часто заключается в том, чтобы увидеть или построить отрезок, длина которого равна искомому расстоянию. Если такой отрезок построен, то в зависимости от условий задачи его длина может быть найдена с помощью теоремы Пифагора, признаков равенства или подобия треугольников и т.п. Так мы и поступаем при нахождении расстояния между скрещивающимися прямыми на уроках геометрии в 10-11 классах.

Если же в трехмерном пространстве введена Oxyz и в ней заданы скрещивающиеся прямые a и b , то справиться с задачей вычисления расстояния между заданными скрещивающимися прямыми позволяет метод координат. Давайте его подробно разберем.

Пусть - плоскость, проходящая через прямую b , параллельно прямой a . Тогда искомое расстояние между скрещивающимися прямыми a и b по определению равно расстоянию от некоторой точки М 1 , лежащей на прямой a , до плоскости . Таким образом, если мы определим координаты некоторой точки М 1 , лежащей на прямой a , и получим нормальное уравнение плоскости в виде , то мы сможем вычислить расстояние от точки до плоскости по формуле (эта формула была получена в статье нахождение расстояния от точки до плоскости). А это расстояние равно искомому расстоянию между скрещивающимися прямыми.

Теперь подробно.

Задача сводится к получению координат точки М 1 , лежащей на прямой a , и к нахождению нормального уравнения плоскости .

С определением координат точки М 1 сложностей не возникает, если хорошо знать основные виды уравнений прямой в пространстве . А вот на получении уравнения плоскости стоит остановиться подробнее.

Если мы определим координаты некоторой точки М 2 , через которую проходит плоскость , а также получим нормальный вектор плоскости в виде , то мы сможем написать общее уравнение плоскости как .

В качестве точки М 2 можно взять любую точку, лежащую на прямой b , так как плоскость проходит через прямую b . Таким образом, координаты точки М 2 можно считать найденными.

Осталось получить координаты нормального вектора плоскости . Сделаем это.

Плоскость проходит через прямую b и параллельна прямой a . Следовательно, нормальный вектор плоскости перпендикулярен и направляющему вектору прямой a (обозначим его ), и направляющему вектору прямой b (обозначим его ). Тогда в качестве вектора можно взять и , то есть, . Определив координаты и направляющих векторов прямых a и b и вычислив , мы найдем координаты нормального вектора плоскости .

Итак, мы имеем общее уравнение плоскости : .

Остается только привести общее уравнение плоскости к нормальному виду и вычислить искомое расстояние между скрещивающимися прямыми a и b по формуле .

Таким образом, чтобы найти расстояние между скрещивающимися прямыми a и b нужно:

Разберем решение примера.

Пример.

В трехмерном пространстве в прямоугольной системе координат Oxyz заданы две скрещивающиеся прямые a и b . Прямую a определяют