Уравнение прямой проходящей через точку м0. Уравнение прямой, проходящей через заданную точку перпендикулярно заданной прямой

  • 21.09.2019

Прямая, проходящая через точку K(x 0 ; y 0) и параллельная прямой y = kx + a находится по формуле:

y - y 0 = k(x - x 0) (1)

Где k - угловой коэффициент прямой.

Альтернативная формула:
Прямая, проходящая через точку M 1 (x 1 ; y 1) и параллельная прямой Ax+By+C=0 , представляется уравнением

A(x-x 1)+B(y-y 1)=0 . (2)

Составить уравнение прямой, проходящей через точку K(;) параллельно прямой y = x + .
Пример №1 . Составить уравнение прямой, проходящей через точку M 0 (-2,1) и при этом:
а) параллельно прямой 2x+3y -7 = 0;
б) перпендикулярно прямой 2x+3y -7 = 0.
Решение . Представим уравнение с угловым коэффициентом в виде y = kx + a . Для этого перенесем все значения кроме y в правую часть: 3y = -2x + 7 . Затем разделим правую часть на коэффициент 3 . Получим: y = -2/3x + 7/3
Найдем уравнение NK, проходящее через точку K(-2;1), параллельно прямой y = -2 / 3 x + 7 / 3
Подставляя x 0 = -2, k = -2 / 3 , y 0 = 1 получим:
y-1 = -2 / 3 (x-(-2))
или
y = -2 / 3 x - 1 / 3 или 3y + 2x +1 = 0

Пример №2 . Написать уравнение прямой, параллельной прямой 2x + 5y = 0 и образующей вместе с осями координат треугольник, площадь которого равна 5.
Решение . Так как прямые параллельны, то уравнение искомой прямой 2x + 5y + C = 0. Площадь прямоугольного треугольника , где a и b его катеты. Найдем точки пересечения искомой прямой с осями координат:
;
.
Итак, A(-C/2,0), B(0,-C/5). Подставим в формулу для площади: . Получаем два решения: 2x + 5y + 10 = 0 и 2x + 5y – 10 = 0 .

Пример №3 . Составить уравнение прямой, проходящей через точку (-2; 5) и параллельной прямой 5x-7y-4=0 .
Решение. Данную прямую можно представить уравнением y = 5 / 7 x – 4 / 7 (здесь a = 5 / 7). Уравнение искомой прямой есть y – 5 = 5 / 7 (x – (-2)), т.е. 7(y-5)=5(x+2) или 5x-7y+45=0 .

Пример №4 . Решив пример 3 (A=5, B=-7) по формуле (2), найдем 5(x+2)-7(y-5)=0.

Пример №5 . Составить уравнение прямой, проходящей через точку (-2;5) и параллельной прямой 7x+10=0.
Решение. Здесь A=7, B=0. Формула (2) дает 7(x+2)=0, т.е. x+2=0. Формула (1) неприменима, так как данное уравнение нельзя разрешить относительно y (данная прямая параллельна оси ординат).

Уравнение прямой проходящей через две точки. В статье " " я обещал вам разобрать второй способ решения представленных задач на нахождение производной, при данном графике функции и касательной к этому графику. Этот способ мы разберём в , не пропустите! Почему в следующей?

Дело в том, что там будет использоваться формула уравнения прямой. Конечно, можно было бы просто показать данную формулу и посоветовать вам её выучить. Но лучше объяснить – от куда она исходит (как выводится). Это необходимо! Если вы её забудете, то быстро восстановить её не представит труда. Ниже подробно всё изложено. Итак, у нас на координатной плоскости имеется две точки А (х 1 ;у 1) и В(х 2 ;у 2), через указанные точки проведена прямая:

Вот сама формула прямой:


*То есть при подстановке конкретных координат точек мы получим уравнение вида y=kx+b.

**Если данную формулу просто «зазубрить», то имеется большая вероятность запутаться с индексами при х . Кроме того, индексы могут обозначаться по разному, например:

Поэтому-то и важно понимать смысл.

Теперь вывод этой формулы. Всё очень просто!


Треугольники АВЕ и ACF подобны по острому углу (первый признак подобия прямоугольных треугольников). Из этого следует, что отношения соответственных элементов равны, то есть:

Теперь просто выражаем данные отрезки через разность координат точек:

Конечно, не будет никакой ошибки если вы запишите отношения элементов в другом порядке (главное соблюдать соответствие):

В результате получится одно и тоже уравнение прямой. Это всё!

То есть, как бы не были обозначены сами точки (и их координаты), понимая данную формулу вы всегда найдёте уравнение прямой.

Формулу можно вывести используя свойства векторов, но принцип вывода будет тот же, так как речь будет идти о пропорциональности их координат. В этом случае работает всё то же подобие прямоугольных треугольников. На мой взгляд описанный выше вывод более понятнее)).

Посмотреть вывод через координаты векторов >>>

Пусть на координатной плоскости построена прямая, проходящая через две заданные точки А(х 1 ;у 1) и В(х 2 ;у 2). Отметим на прямой произвольную точку С с координатами (x ; y ). Также обозначим два вектора:


Известно, что у векторов лежащих на параллельных прямых (либо на одной прямой), их соответствующие координаты пропорциональны, то есть:

— записываем равенство отношений соответствующих координат:

Рассмотрим пример:

Найти уравнение прямой, проходящей через две точки с координатами (2;5) и (7:3).

Можно даже не строить саму прямую. Применяем формулу:

Важно, чтобы вы уловили соответствие, при составлении соотношения. Вы не ошибётесь, если запишите:

Ответ: у=-2/5x+29/5 иди у=-0,4x+5,8

Для того, чтобы убедится, что полученное уравнение найдено верно, обязательно делайте проверку — подставьте в него координаты данных в условии точек. Должны получится верные равенства.

На этом всё. Надеюсь, материал был вам полезен.

С уважением, Александр.

P.S: Буду благодарен Вам, если расскажете о сайте в социальных сетях.

В данной статье научимся составлять уравнения прямой, проходящей через заданную точку на плоскости перпендикулярно заданной прямой. Изучим теоретические сведения, приведем наглядные примеры, где необходимо записать такое уравнение.

Yandex.RTB R-A-339285-1

Перед нахождением уравнения прямой, проходящей через заданную точку перпендикулярно заданной прямой. Теорема рассматривается в средней школе. Через заданную точку, лежащую на плоскости, можно провести единственную прямую, перпендикулярную данной. Если имеется трехмерное пространство, то количество таких прямых увеличится до бесконечности.

Определение 1

Если плоскость α проходит через заданную точку М 1 перпендикулярно к заданной прямой b , то прямые, лежащие в этой плоскости, в том числе и проходящая через М 1 являются перпендикулярными заданной прямой b .

Отсюда можно прийти к выводу, что составление уравнения прямой, проходящей через заданную точку перпендикулярно заданной прямой применимо только для случая на плоскости.

Задачи с трехмерным пространством подразумевают поиск уравнения плоскости, проходящей через заданную точку перпендикулярно к заданной прямой.

Если на плоскости с системой координат О х у z имеем прямую b , то ей соответствует уравнение прямой на плоскости, задается точка с координатами M 1 (x 1 , y 1) , а необходимо составить уравнение прямой a , которая проходит через точку М 1 , причем перпендикулярно прямой b .

По условию имеем координаты точки М 1 . Для написания уравнения прямой необходимо иметь координаты направляющего вектора прямой a , или координаты нормального вектора прямой a , или угловой коэффициент прямой a .

Необходимо получить данные из заданного уравнения прямой b . По условию прямые a и b перпендикулярные, значит, направляющий вектор прямой b считается нормальным вектором прямой a . Отсюда получим, что угловые коэффициенты обозначаются как k b и k a . Они связаны при помощи соотношения k b · k a = - 1 .

Получили, что направляющий вектор прямой b имеет вид b → = (b x , b y) , отсюда нормальный вектор - n a → = (A 2 , B 2) , где значения A 2 = b x , B 2 = b y . Тогда запишем общее уравнение прямой, проходящее через точку с координатами M 1 (x 1 , y 1) , имеющее нормальный вектор n a → = (A 2 , B 2) , имеющее вид A 2 · (x - x 1) + B 2 · (y - y 1) = 0 .

Нормальный вектор прямой b определен и имеет вид n b → = (A 1 , B 1) , тогда направляющий вектор прямой a является вектором a → = (a x , a y) , где значения a x = A 1 , a y = B 1 . Значит осталось составить каноническое или параметрическое уравнение прямой a , проходящее через точку с координатами M 1 (x 1 , y 1) с направляющим вектором a → = (a x , a y) , имеющее вид x - x 1 a x = y - y 1 a y или x = x 1 + a x · λ y = y 1 + a y · λ соответственно.

После нахождения углового коэффициента k b прямой b можно высчитать угловой коэффициент прямой a . Он будет равен - 1 k b . Отсюда следует, что можно записать уравнение прямой a , проходящей через M 1 (x 1 , y 1) с угловым коэффициентом - 1 k b в виде y - y 1 = - 1 k b · (x - x 1) .

Полученное уравнение прямой, проходящее через заданную точку плоскости перпендикулярно заданной. Если того требуют обстоятельства, можно переходить к другому виду данного уравнения.

Решение примеров

Рассмотрим составление уравнения прямой, проходящей через заданную точку плоскости и перпендикулярно заданной прямой.

Пример 1

Записать уравнение прямой а, которая проходит через точку с координатами M 1 (7 , - 9) и перпендикулярна прямой b , которое задано каноническим уравнением прямой x - 2 3 = y + 4 1 .

Решение

Из условия имеем, что b → = (3 , 1) является направляющим вектором прямой x - 2 3 = y + 4 1 . Координаты вектора b → = 3 , 1 являются координатами нормального вектора прямой a , так как прямые a и b взаимно перпендикулярны. Значит, получаем n a → = (3 , 1) . Теперь необходимо записать уравнение прямой, проходящее через точку M 1 (7 , - 9) , имеющее нормальный вектор с координатами n a → = (3 , 1) .

Получим уравнение вида: 3 · (x - 7) + 1 · (y - (- 9)) = 0 ⇔ 3 x + y - 12 = 0

Полученное уравнение является искомым.

Ответ: 3 x + y - 12 = 0 .

Пример 2

Составить уравнение прямой, которая проходит через начало координат системы координат О х у z , перпендикулярно прямой 2 x - y + 1 = 0 .

Решение

Имеем, что n b → = (2 , - 1) является нормальным вектором заданной прямой. Отсюда a → = (2 , - 1) - координаты искомого направляющего вектора прямой.

Зафиксируем уравнение прямой, проходящую через начало координат с направляющим вектором a → = (2 , - 1) . Получим, что x - 0 2 = y + 0 - 1 ⇔ x 2 = y - 1 . Полученное выражение является уравнение прямой, проходящей через начало координат перпендикулярно прямой 2 x - y + 1 = 0 .

Ответ: x 2 = y - 1 .

Пример 3

Записать уравнение прямой, проходящей через точку с координатами M 1 (5 , - 3) перпендикулярно прямой y = - 5 2 x + 6 .

Решение

Из уравнения y = - 5 2 x + 6 угловой коэффициент имеет значение - 5 2 . Угловой коэффициент прямой, которая перпендикулярна ей имеет значение - 1 - 5 2 = 2 5 . Отсюда делаем вывод, что прямая, проходящая через точку с координатами M 1 (5 , - 3) перпендикулярно прямой y = - 5 2 x + 6 , равна y - (- 3) = 2 5 · x - 5 ⇔ y = 2 5 x - 5 .

Ответ: y = 2 5 x - 5 .

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Уравнение прямой, проходящей через данную точку в данном направлении. Уравнение прямой, проходящей через две данные точки. Угол между двумя прямыми. Условие параллельности и перпендикулярности двух прямых. Определение точки пересечения двух прямых

1. Уравнение прямой, проходящей через данную точку A (x 1 , y 1) в данном направлении, определяемом угловым коэффициентом k ,

y - y 1 = k (x - x 1). (1)

Это уравнение определяет пучок прямых, проходящих через точку A (x 1 , y 1), которая называется центром пучка.

2. Уравнение прямой, проходящей через две точки: A (x 1 , y 1) и B (x 2 , y 2), записывается так:

Угловой коэффициент прямой, проходящей через две данные точки, определяется по формуле

3. Углом между прямыми A и B называется угол, на который надо повернуть первую прямую A вокруг точки пересечения этих прямых против движения часовой стрелки до совпадения ее со второй прямой B . Если две прямые заданы уравнениями с угловым коэффициентом

y = k 1 x + B 1 ,

у - у 1 =k(х - х 1)

уравнение прямой: у=kх+в

Если мы преобразуем первоначальное уравнение у - у 1 =k(х - х 1), то получим у=kх+(у 1 -kх 1) Оно удовлетворяет условия уравнения прямой: у=kх+в, т.к.

1. его степень первая, а значит оно может быть прямой,

2. прямая проходит через точку (х 1 ; у 1), т.к. координаты этой точки удовлетворяют уравнению: 0=0

3. роль коэфициента в играет выражение у 1 -kх 1

Прямая с уравнением у - у 1 =k(х - х 1) проходит через 1 точку. Потребуем, что бы и вторая точка лежала на этой прямой, т.е. что бы выполнялось равенство у 2 - у 1 =k(х 2 - х 1). Отсюда находим k= у 2 - у 1 ¸ х 2 - х 1 и подставим в уравнение:

у - у 1 = у 2 - у 1 ¸ х 2 - х 1 ×(х - х 1) или

х - х 1 ¸х 2 - х 1 = у - у 1 ¸у 2 - у 1

15.Угол м/у прямыми на плоскости

Прямые: у=k 1 х +в 1 , у=k 2 х +в 2

В тр-ке АВС сумма внутр. углов a 1 +b равна внешнему углу a 2 поэтому b=a 2 -a 1 Очевидно, tga 1 = k 1 ; tga 2 = k 2 .Проименяя формулу для tg разности 2х углов получим tgb=tg(a 2 -a 1)= tga 2 -tga 1 ¸1+ tga 2 ×tga 1

Окончательно имеем tgb= k 2 - k 1 ¸1+k 2 × ×k 1 Вычислив тангенс можно найти и сам угол b.

16. Условия || и ^ прямых на плоскости.


Даны уравнения прямых с угловым коэф. у=k 1 х и у=k 2 х +в 2

Условия || прямых -это равенство угловых коэф. к 1 =к 2 (1)

Условие (1) выполн. и для слившихся прямых. Формулу углового коэф. прямых (tga= k 2 - k 1 ¸1+k 2 × ×k 1) можно записать ввиде: ctga= 1+k 2 × ×k 1 ¸k 2 - k 1 (это в сслучае, если к 1 ¹к 2). Условие ^ прямых выражается равенством k 2 × ×k 1 = -1. Если к 1 =0 или к 2 =0, то одна из прямых || оси Ох, а вторая ей ^, имеет уравнение вида х=а.

Пусть прямые заданы общим уравнением. А 1 х+В 1 у+С 1 =0, А 2 х+В 2 у+С 2 =0, Если В1=В2=0, то обе прямые параллельны оси Оу и между собой (их уравнения имеют вид х=а) Если В1=0, а В2¹0, то прямые^. В случае когда А2=0 (уравнение приводится к виду х=а, у=в)В случае В1¹0 и В2¹0можно выразить у в каждом уравнении. у= -А1х¸В1-С1¸В1;

У= - А2х¸В2-С2¸В2, тогда к1= -А1¸В1, а к2= - А2¸В2 и условие || А1¸В1= А2¸В2 или А1¸А2= В1¸В2.

С помощью равенства 1+к1×к2=0, 1+ А1¸В1× А2¸В2=0. Приходим к условию ^прямых А1×А2+В1×В2=0.

Эллипс

Эллипсом называется геометрическое место точек плоскости, сумма расстояний которых до двух данных точек, называемых фокусами, есть величина постоянная (большая расстояния между фокусами)

Уравнение элипса примет самый простой вид, если фокусы разместить на оси Ох слева от начала координат на равном от него расстоянии. F 1 F 2 - фокусы эллипса. Обозначим F 1 F 2 = 2c тогда фокусы имеют координаты (-с,0) и (с,0). Расстояния о фокусов до текущей точки эллипса М обозначим r 1 и r 2 . Их называют фокальными радиусами. Постоянную величину r 1 + r 2 обозначим 2а: r 1 + r 2 =2а. помещая точку М в точки и А" легко сообразить, что А"А = 2а. Отрезки AA" и ВВ" называются осями эллипса, а отрезки ОА и ОВ - полуосями эллипса. Точки А,А",В,В" называют вершинами эллипса. Пусть М(х,у)находится в точке В, тогда r 1 = r 2 =а. Из тр-ка ВОF 2 ВО=ÖBF 2 2 -OF 2 2 Обозначим ВО=в, тогда в=Öа 2 - с 2 . Через полуосиэллипса а и в уравнение запишится так:

Это уравнение называют каноническим уравнением эллипса. Окружность - частный случай эллипса, получается при а=в=R(R - радикс окружности). Чем больше отличаются друг от друга полуоси а и в, тем более сплюснутым будет эллипс. Степень сплюснутости эллипса принято измерять эксцентриситетом

Очевидно, 0£ɛ£1. При ɛ=0 имеем окружность, с увеличением ɛэллипс все больше отличается от окружности, становясь более выпуклым.

Гипербола

Гиперболой называется геом. место точек плоскости, для которых абсолютная величина разности расстояний до двух данный точек, называемых фокусами, есть величина посоянная, не равная 0 и меньшая расстояния между фокусами. Фокусы F 1 и F 2 снова расположим на оси Ох в точках (-с,0), (с,0). Отрезки F 1 М = r 1 и F 2 М = r 2 называют фокальными радиусами. По определению |r 1 - r 2 | есть величина постоянная. Обозначим ее 2а: |r 1 - r 2 | =2а. Точки А и А" называют вершинами гиперболы. Легко понять, что АА" =2а. Действительно, для точки А r 1 =АF 1 а r 2 =АF 2 . Очевидно, АF 2 =А"F 1 ,поэтому r 1 - r 2 = АF 1 -АF 2 = АF 1 =А"F 1 = А"A. С другой стороны r 1 - r 2 =2а. Отрезок АА" называют действительной осью гиперболы. Пусть в=Öс 2 -а 2 Точки В и В" имеют координаты(0,в) и (0,-в). отрезок ВВ" называют мнимой осью гиперболы. Канонической уравнение гиперболы имеет вид:

у гиперболы 2 ветви, при а=в гиперола называется равнобочной. Уравнения у=вх¸а и у=-вх¸а. Они называются асимптотами. Если точка удаляется по любой из ветвей гиперболы, то ее расстояние до соответствующей асимптоты стремиться к 0. Для гиперболы эксцентриситет принимает зн-ия большие 1.

Парабола.

Параболой называется геометрическое место точек плоскости, равноудаленных от данной прямой, называемой директрисой, и от данной точки, не принадлежащей директрисе, называемой фокусом. Обозначим расстояние между фокусом и директрисой через р. Канонической уравнение параболы имеет вид:

у 2 =2рх и получается, если фокус F поместить в точку (р¸2, 0), а в качестве директрисы взять прямую х = - р¸2. Число р называют параметром параболы, точку (0,0) - ее вершиной.

20. Плоскость в пространстве: общее уравнение, геометрический смысл коэфициентов, уравнение плоскости., проходящей через заданную точку пространства.

Общее уравнение плоскости: Ах+Ву+Сz +D=0, в котором хотя бы один из коэффициентов А,В,С отличен от 0. Эти коэффициенты имеют опред. Геом. смысл

Зададим положение плоскости с помощью некоторой точки М 0 (х 0 ,у 0 ,z 0) и ненулевого вектора N(А,В,С), перпендекулярного плоскости. По этим данным плоскость определяется однозначно. Пусть М(х,у,z) - текущая точка плоскости. Векторы N(А,В,С) и М 0 М(х-х 0 ,у-у 0 ,z-z 0) ортогональны, поэтому их скалярное произведение равно)

А(х-х 0)+В(у-у 0)+С(z-z 0)=0 (1)

После преобразований получаем уравнение:

Ах+Ву+Сz+D=0, где D = -Ах 0 -В 0- Сz 0

Следовательно, А,В,С - координаты вектора, перпендекулярного плоскости, заданной общим уравнением.

Множество плоскостей, описываемых уравнением (1), при фиксированной точке (х 0 ,у 0 ,z 0) и переменных коэфициентах А,В,С называются связкой плоскостей. Когда среди условий, задающих искомую плоскость, значится ее точка М 0 (х 0 ,у 0 ,z 0), можно начинать решение задачи с применения уравнения (1). Плоскость так же называют поверностью первого порядка.

Сфера,

Сфера . Уравнение сферы, центр которой находится в начале координат: х 2 +у 2 +z 2 =R 2 . Пусть теперь центр расположен в точке М 0 (х 0 ,у 0 ,z 0)

Текущая точка М(х,у,z) сферы находится на расстоянии R от т. М.

Из равенства ММ 0 2 =R 2 получаем: (х-х 0) 2 +(у-у 0) 2 +(z-z 0) 2 =R 2

Эллипсоид канонич. уравнение:

А,в,с - полуоси эллипсоида. При а=в получается эллипсоид вращения. Такую форму имеет поверхность нашей планеты. При а=в=с эллипсоид превращается в сферы радиуса R=а

Параболоид вращения

В плоскости уОz рассмотрим параболу у 2 =2рz. Поверхность, образованная вращением этой параболы вокруг оси Oz называется параболоидом вращения.

Пусть М(х,у,z) - произвольная точка поверхности, а М 0 - точка с той же аппликатой z, лежащая на параболе у 2 =2рz. Т.к. О"М=О" М 0 , то у 2 для точки М 0 можно заменить в уравнении на х 2 +у 2 для точки М: х 2 +у 2 =2рz - уравнение параболоида вращения