В какой оболочке генерируется электромагнитное поле земли. Теория магнитного поля и интересные факты о магнитном поле земли

  • 11.10.2019

ЛИПЕЦКИЙ ГОСУДАРСТВЕННЫЙ ПЕДАГОГИЧЕСКИЙ ИНСТИТУТ

КАФЕДРА ТЕОРЕТИЧЕСКАЙ И ОБЩЕЙ ФИЗИКИ

Курсовая работа по физике.

ОПРЕДЕЛЕНИЕ ГОРИЗОНТАЛЬНОЙ СОСТАВЛЯЮЩЕЙ МАГНИТНОГО ПОЛЯ ЗЕМЛИ.

Выполнил студент группы фпо–3

Казанцев Н.Н.

Руководитель доцент кафедры ТОФ

Грызов Ю.В.

ЛИПЕЦК

  1. Магнитное поле.

Магнитное поле представляет собой особую форму материи, посредством которого осуществляется взаимодействие между движущимися электрически заряженными частицами.

Основные свойства магнитного поля:

    магнитное поле порождается электрическим током (движущимися зарядами).

    Магнитное поле обнаруживается по действию на электрический ток (движущиеся заряды).

Открыл магнитное поле в 1820 г. датский физик Х.К. Эрстед.

Магнитное поле имеет направленный характер и должно характеризоваться векторной величиной. Эту величину принято обозначать буквой В . Логично было бы по аналогии с напряжённостью электрического поле Е назвать В напряжённостью магнитного поля. Однако по историческим причинам основную силовую характеристику магнитного поля назвали магнитной индукцией . Название же "напряжённость магнитного поля" оказалась присвоенной вспомогательной характеристике D электрического поля.

Магнитное поле, в отличии от электрического, не оказывает действие на покоящийся заряд. Сила возникает лишь тогда, когда заряд движется.

Итак, движущиеся заряды (токи) изменяют свойства окружающего их пространства – создают в нём магнитное поле. Это проявляется в том, что на движущиеся в нём заряды (токи) действуют силы.

Опыт даёт. Что для магнитного, как и для электрического, справедлив принцип суперпозиции:

поле В , порождаемое несколькими движущимися зарядами (токами), равно векторной сумме полей B I , порождаемых каждым зарядом (током) в отдельности:

II. Общая характеристика магнитного поля земли.

Земля в целом представляет собой огромный шаровой магнит. Человечество начало ис­пользовать магнитное поле Земли давно. Уже в начале XII-XIII вв. получает широкое распространение в мореходстве компас. Однако в те времена считалось, что стрелку компаса ориентирует Полярная звезда и её магнетизм. Предположение о существовании магнитного поля Земли впервые высказал в 1600 г. английский естествоиспытатель Гильберт.

В любой точке пространства, окружающего Землю, и на её поверхности об­наруживается действие магнитных сил. Иными словами, в пространстве, окру­жающем Землю, создаётся магнитное поле, силовые линии которого изобра­жены на рис.1.

Магнитные и географические полюса Земли не совпадают друг с другом. Се­верный маг­нитный полюс N лежит в южном полушарии, вблизи берегов Ан­тарктиды, а южный магнитный полюс S находится в Северном полушарии, вблизи северного берега острова Виктория (Канада). Оба полюса непрерывно перемещаются (дрейфуют) на земной поверхности со скоростью около 5 за год из-за переменности порождающих магнитное поле процессов. Кроме того, ось магнитного поля не проходит через центр Земли, а отстаёт от него на 430 км. Магнитное поле Земли не симметрично. Благодаря тому, что ось магнитного поля проходит всего под углом в 11,5 градусов к оси вращения планеты, мы можем пользоваться компасом.

Основная часть магнитного поля Земли, по современным воззрениям, имеет внутриземное происхождение. Магнитное поле Земли создаётся её ядром. Внешнее ядро Земли жидкое и металлическое. Металл – проводящее ток вещество, и если бы существовали в жидком ядре постоянные течения, то соответствующий электрический ток создавал бы магнитное поле. Благодаря вращению Земли, такие течения в ядре существуют, т.к. Земля в некотором приближении является магнитным диполем, т.е. своеобразным магнитом с двумя полюсами: южным и северным.

Незначительная часть магнитного поля (около 1%) имеет внеземное проис­хождение. Возникновение этой части приписывают электрическим токам, те­кущим в проводящих слоях ионосферы и поверхности Земли. Эта часть магнитного поля Земли подвержена слабому изменению со време­нем, которое называется вековой вариацией. Причины существования электрических токов в вековой вариации неизвестны.

В идеальном и гипотетическом предположении, в котором Земля была бы одинока в космическом пространстве, силовые линии магнитного поля планеты располагались таким же образом, как и силовые линии обычного магнита из школьного учебника физики, т.е. в виде симметричных дуг, протянувшихся от южного полюса к северному. Плотность линий (напряжённость магнитного поля) падала бы с удалением от планеты. На деле, магнитное поле Земли находится во взаимодействии с магнитными полями Солнца, планет и потоков заряженных частиц, испускаемых в изобилии Солнцем. Если влиянием самого Солнца и тем более планет из-за удалённости можно пренебречь, то с потоками частиц, иначе – солнечным ветром, так не поступишь. Солнечный ветер представляет собой потоки мчащихся со скоростью около 500 км/с частиц, испускаемых солнечной атмосферой. В моменты солнечных вспышек, а также в периоды образования на Солнце группы больших пятен, резко возрастает число свободных электронов, которые бомбардируют атмосферу Земли. Это приводит к возмущению токов текущих в ионосфере Земли и, благодаря этому, происходит изменение магнитного поля Земли. Возникают магнитные бури. Такие потоки порождают сильное магнитное поле, которое и взаимодействует с полем Земли, сильно деформируя его. Благодаря своему магнитному полю, Земля удерживает в так называемых радиационных поясах захваченные частицы солнечного ветра, не позволяя им проходить в атмосферу Земли и тем более к поверхности. Частицы солнечного ветра были бы очень вредны для всего живого. При взаимодействии упоминавшихся полей образуется граница, по одну сторону которой находится возмущённое (подвергшееся изменениям из-за внешних влияний) магнитное поле частиц солнечного ветра, по другую – возмущённое поле Земли. Эту границу стоит рассматривать как предел околоземного пространства, границу магнитосферы и атмосферы. Вне этой границы преобладает влияние внешних магнитных полей. В направлении к Солнцу магнитосфера Земли сплюснута под натиском солнечного ветра и простирается всего до 10 радиусов планеты. В противоположном направлении имеет место вытянутость до 1000 радиусов Земли.

Основная часть магнитного поля Земли обнаруживает аномалии в различных районах земной поверхности. Эти аномалии, по-видимому, следует приписать присутствию в земной коре ферромагнитных масс или различию магнитных свойств горных пород. Поэтому изучение магнитных аномалий имеет практи­ческое значение при исследовании полезных ископаемых.

Существование магнитного поля в любой точке Земли можно установить с помощью магнитной стрелки. Если подвесить магнитную стрелку NS на нити l (рис.2) так, чтобы точка подвеса совпадала с центром тяжести стрелки, то стрелка установится по направлению касательной к силовой линии магнитного поля Земли.

В северном полушарии - южный конец будет наклонён к Земле и стрелка со­ставит с го­ризонтом угол наклонения Q (на магнитном экваторе наклонение Q равно нулю). Вертикальная плоскость, в которой расположится стрелка, назы­вается плоскостью магнитного меридиана. Все плоскости магнитных меридиа­нов пересекаются по прямой NS , а следы магнитных меридианов на земной по­верхности сходятся в магнитных полюсах N и S . Так как магнитные полюса не совпадают с географическими полюсами, то стрелка будет отклонена от гео­графического меридиана. Угол, который образует вертикальная плоскость, проходящая через стрелку (т.е. магнитный меридиан), с географическим мери­дианом, называется магнитным склонением a (рис. 2). Вектор

полей на­пряжёности магнитного поля Земли можно разложить на две составляющие: горизонтальную и вертикальную(рис. 3). Значение углов наклоне­ния и склонения, а также горизонтальной составляющейдают возмож­ность определить величину и направление полной напряжённости магнитного поля Земли в данной точке. Если магнитная стрелка может свободно вращаться лишь вокруг вертикальной оси, то она будет устанавливаться под действием горизонтальной составляющей магнитного поля Земли в плоскости магнитного меридиана. Горизонтальная составляющая, магнитное склонениеa и на­клонение Q называются элементами земного магнетизма. Все элементы зем­ного магнетизма изменяются с течением времени.

Для чего нужно магнитное поле Земли, Вы узнаете из этой статьи.

Какое значение магнитного поля Земли?

В первую очередь, оно защищает искусственные спутники и жителей планеты от действия частиц из космоса. К ним относят заряженные, ионизированные частицы солнечного ветра. Когда они попадают в нашу атмосферу, магнитное поле меняет их траекторию движения и направляет вдоль линии поля.

К тому же, в эпоху новых технологий мы вошли благодаря нашему магнитному полю. Все современные, продвинутые девайсы, которые работают, используя самые разные накопители памяти (диски, карты) – зависят напрямую от магнитного поля. Его напряженность и стабильность непосредственно оказывает влияние на абсолютно все информационные, компьютерные системы, так как вся информация, необходимая для их правильной работы, размещена на магнитных носителях.

Поэтому с уверенностью можно сказать, что процветание современной цивилизации, «жизнеспособность» ее технологий тесным образом зависит от состояния магнитого поля нашей планеты.

Что такое магнитное поле Земли?

Магнитное поле Земли являет собой область вокруг планеты, где воздействуют магнитные силы.

Что касается его происхождения, то данный вопрос окончательно до сих пор не разрешен. Но большая часть исследователей склоняются к тому, что наличием магнитного поля наша планета обязана ядру. Оно состоит из внутренней твердой и наружной жидкой частей. Вращение Земли способствуют постоянным течениям в жидком ядре. А это приводит к возникновению магнитного поля вокруг них.

Большая часть планет Солнечной системы обладают магнитными полями в той или иной степени. Если их разместить в ряд по уменьшению дипольного магнитного момента, то получится такая картинка: Юпитер, Сатурн, Земля, Меркурий и Марс. Главная причина возникновения его – это наличие жидкого ядра.

Строение и характеристики магнитного поля Земли

На небольшом удалении от поверхности Земли, порядка трёх её радиусов, магнитные силовые линии имеют диполеподобное расположение. Эта область называется плазмосферой Земли.

По мере удаления от поверхности Земли усиливается воздействие солнечного ветра : со стороны Солнца геомагнитное поле сжимается, а с противоположной, ночной стороны, оно вытягивается в длинный «хвост».

Плазмосфера

Заметное влияние на магнитное поле на поверхности Земли оказывают токи в ионосфере . Это область верхней атмосферы, простирающаяся от высот порядка 100 км и выше. Содержит большое количество ионов . Плазма удерживается магнитным полем Земли, но её состояние определяется взаимодействием магнитного поля Земли с солнечным ветром, чем и объясняется связь магнитных бурь на Земле с солнечными вспышками.

Параметры поля

Точки Земли, в которых напряжённость магнитного поля имеет вертикальное направление, называют магнитными полюсами . Таких точек на Земле две: северный магнитный полюс и южный магнитный полюс .

Прямая, проходящая через магнитные полюсы, называется магнитной осью Земли. Окружность большого круга в плоскости, которая перпендикулярна к магнитной оси, называется магнитным экватором. Вектор магнитного поля в точках магнитного экватора имеет приблизительно горизонтальное направление.

Для магнитного поля Земли характерны возмущения, называемые геомагнитными пульсациями вследствие возбуждения гидромагнитных волн в магнитосфере Земли; частотный диапазон пульсаций простирается от миллигерц до одного килогерца .

Магнитный меридиан

Магнитными меридианами называются проекции силовых линий магнитного поля Земли на её поверхность; сложные кривые, сходящиеся в северном и южном магнитных полюсах Земли .

Гипотезы о природе магнитного поля Земли

В последнее время получила развитие гипотеза, связывающая возникновение магнитного поля Земли с протеканием токов в жидком металлическом ядре. Подсчитано, что зона, в которой действует механизм «магнитное динамо », находится на расстоянии 0,25-0,3 радиуса Земли . Аналогичный механизм генерации поля может иметь место и на других планетах, в частности, в ядрах Юпитера и Сатурна (по некоторым предположениям, состоящих из жидкого металлического водорода).

Изменения магнитного поля Земли

Это подтверждается и текущим возрастанием угла раствора каспов (полярных щелей в магнитосфере на севере и юге), который к середине 1990-х годов достиг 45°. В расширившиеся щели устремился радиационный материал солнечного ветра, межпланетного пространства и космических лучей, вследствие чего в полярные области поступает большее количество вещества и энергии, что может привести к дополнительному разогреву полярных шапок.

Геомагнитные координаты (координаты Мак-Илвайна)

В физике космических лучей широко используются специфические координаты в геомагнитном поле, названные в честь учёного Карла Мак-Илвайна (Carl McIlwain ), первым предложившего их использование , так как они основаны на инвариантах движения частиц в магнитном поле. Точка в дипольном поле характеризуется двумя координатами (L, B), где L - так называемая магнитная оболочка, или параметр Мак-Илвайна (англ. L-shell, L-value, McIlwain L-parameter ), B - магнитная индукция поля (обычно в Гс). За параметр магнитной оболочки обычно принимается величина L, равная отношению среднего удаления реальной магнитной оболочки от центра Земли в плоскости геомагнитного экватора, к радиусу Земли. .

История исследований

О способности намагниченных предметов располагаться в определённом направлении было известно ещё китайцам несколько тысячелетий назад.

В 1544 году немецкий учёный Георг Гартман открыл магнитное наклонение . Магнитным наклонением называют угол, на который стрелка под действием магнитного поля Земли отклоняется от горизонтальной плоскости вниз или вверх. В полушарии севернее магнитного экватора (который не совпадает с географическим экватором) северный конец стрелки отклоняется вниз, в южном - наоборот. На самом магнитном экваторе линии магнитного поля параллельны поверхности Земли.

Впервые предположение о наличии магнитного поля Земли, которое и вызывает такое поведение намагниченных предметов, высказал английский врач и натурфилософ Уильям Гильберт (англ. William Gilbert ) в 1600 году в своей книге «О магните» («De Magnete»), в которой описал опыт с шаром из магнитной руды и маленькой железной стрелкой. Гильберт пришел к заключению, что Земля представляет собой большой магнит. Наблюдения английского астронома Генри Геллибранда (англ. Henry Gellibrand ) показали, что геомагнитное поле не постоянно, а медленно изменяется.

Угол, на который отклоняется магнитная стрелка от направления север - юг, называют магнитным склонением. Христофор Колумб открыл, что магнитное склонение не остается постоянным, а претерпевает изменения с изменением географических координат. Открытие Колумба послужило толчком к новому изучению магнитного поля Земли: сведения о нём были нужны мореплавателям. Русский ученый М. В. Ломоносов в 1759 г. в докладе «Рассуждение о большой точности морского пути» дал ценные советы, позволяющие увеличить точность показаний компаса. Для изучения земного магнетизма М. В. Ломоносов рекомендовал организовать сеть постоянных пунктов (обсерваторий), в которых производить систематические магнитные наблюдения; такие наблюдения необходимо широко проводить и на море. Мысль Ломоносова об организации магнитных обсерваторий была осуществлена лишь спустя 60 лет в России.

В 1831 г. английским полярным исследователем Джоном Россом в Канадском архипелаге был открыт магнитный полюс - область, где магнитная стрелка занимает вертикальное положение, то есть наклонение равно 90°. В 1841 г. Джеймс Росс (племянник Джона Росса) достиг другого магнитного полюса Земли, находящегося в Антарктиде.

Карл Гаусс (нем. Carl Friedrich Gauß ) выдвинул теорию о происхождении магнитного поля Земли и в 1839 году доказал, что основная его часть выходит из Земли, а причину небольших, коротких отклонений его значений необходимо искать во внешней среде.

См. также

  • Intermagnet (англ. )

Примечания

Литература

  • Сивухин Д. В. Общий курс физики. - Изд. 4-е, стереотипное. - М .: Физматлит ; Изд-во МФТИ, 2004. - Т. III. Электричество. - 656 с. - ISBN 5-9221-0227-3 ; ISBN 5-89155-086-5 .
  • Кошкин Н.И., Ширкевич М.Г. Справочник по элементарной физике. - М .: Наука, 1976.
  • Н. В. Короновский Магнитное поле геологического прошлого Земли. Соросовский образовательный журнал, N5, 1996, с. 56-63

Ссылки

Карты смещения магнитных полюсов Земли за период с 1600 по 1995 год

Прочая информация по теме

  • Инверсии магнитного поля в геологической истории Земли
  • Влияние инверсии магнитного поля на климат и эволюцию жизни на Земле

Wikimedia Foundation . 2010 .

Смотреть что такое "Магнитное поле Земли" в других словарях:

    До расстояний? 3R= (R= радиус Земли) соответствует приблизительно полю однородно намагниченного шара с напряженностью поля? 55 7 А/м (0,70 Э) у полюсов магнитных Земли и 33,4 А/м (0,42 Э) на магнитном экваторе. На расстояниях 3R магнитное поле… … Большой Энциклопедический словарь

    Пространство вокруг земного шара, в котором обнаруживается сила земного магнетизма. Магнитное поле Земли характеризуется вектором напряженности, магнитным наклонением и магнитным склонением. EdwART. Толковый Военно морской Словарь, 2010 … Морской словарь

Магнитное поле Земли - это образование, порождаемое источниками внутри планеты. Оно является объектом исследования соответствующего раздела геофизики. Далее рассмотрим подробнее, что собой представляет магнитное поле Земли, как оно образуется.

Общая информация

Недалеко от поверхности Земли, примерно на расстоянии трёх её радиусов, силовые линии от магнитного поля располагаются по системе "двух полярных зарядов". Здесь располагается область, называемая "плазменной сферой". С удалением от поверхности планеты нарастает влияние потока ионизированных частиц из солнечной короны. Это ведёт к сжатию магнитосферы со стороны Солнца, и напротив, магнитное поле Земли вытягивается с обратной, теневой стороны.

Плазменная сфера

Ощутимое воздействие на поверхностное магнитное поле Земли оказывает направленное движение заряженных частиц в верхних слоях атмосферы (ионосферы). Месторасположение последней - от ста километров и выше от поверхности планеты. Магнитное поле Земли удерживает плазмосферу. Однако её структура сильно зависит от активности солнечного ветра и взаимодействия его с удерживающим слоем. И частота магнитных бурь на нашей планете обусловлена вспышками на Солнце.

Терминология

Существует понятие "магнитная ось Земли". Это прямая, которая проходит через соответствующие полюсы планеты. "Магнитным экватором" называется большая окружность плоскости, перпендикулярная этой оси. Вектор на ней имеет приближенное к горизонтальному направление. Усреднённая напряжённость магнитного поля Земли значительно зависима от географического положения. Приблизительно она равна 0,5 Э, то есть 40 А/м. На магнитном экваторе этот же показатель равен примерно 0,34 Э, а вблизи полюсов он близок к 0,66 Э. В некоторых аномалиях планеты, например, в пределах Курской аномалии, показатель увеличен и составляет 2 Э. Силовые линии магнитосферы Земли со сложным строением, спроецированные на её поверхность и сходящиеся на её же полюсах, носят название "магнитных меридианов".

Природа возникновения. Предположения и догадки

Не так давно получило право на существование предположение о связи возникновения магнитосферы Земли с течением тока в жидкометаллическом ядре, находящемся на расстоянии четверти-трети радиуса нашей планеты. У учёных есть предположение и о так называемых "теллурических токах", протекающих вблизи земной коры. Следует сказать, что с течением времени происходит трансформация формирования. Магнитное поле Земли неоднократно изменялось в последние сто восемьдесят лет. Это зафиксировано в океанической коре, и об этом свидетельствуют исследования остаточной намагниченности. Путём сопоставления участков по обе стороны хребтов океана определяют время расхождения этих участков.

Сдвиг магнитных полюсов Земли

Местоположение этих участков планеты непостоянно. Регистрируется факт их смещений уже с конца девятнадцатого века. В Южном полушарии магнитный полюс сместился за это время на 900 км и оказался в акватории Индийского океана. В Северной части происходят аналогичные процессы. Здесь полюс смещается по направлению к магнитной аномалии в Восточной Сибири. С 1973 по 1994 годы расстояние, на которое сдвинулся здесь участок, составило 270 км. Эти предварительно рассчитанные данные подтвердились позже замерами. По последним данным, скорость движения магнитного полюса Северного полушария значительно увеличилась. Она выросла с 10 км/год в семидесятых годах прошлого века до 60 км/год в начале нынешнего. При этом напряжённость у земного магнитного поля неравномерно уменьшается. Так, за последние 22 года она в отдельных местах снизилась на 1.7%, а где-то на 10%, хотя есть и участки, где она, напротив, возросла. Ускорение в смещении магнитных полюсов (приблизительно на 3 км в год) даёт повод предположить, что наблюдаемое сегодня их перемещение не есть экскурс, это очередная инверсия.

Это косвенно подтверждается и увеличением так называемых "полярных щелей" на юге и севере магнитосферы. В образовавшиеся расширения стремительно проникает ионизированный материал солнечной короны и космоса. От этого в приполярных областях Земли собирается всё большее количество энергии, что само по себе чревато дополнительным разогревом полярных ледяных шапок.

Координаты

В науке, изучающей космические лучи, используют координаты геомагнитного поля, названные в честь учёного Мак-Илвайна. Он первым предложил использовать их, поскольку они основаны на изменённых вариантах активности заряженных элементов в магнитном поле. Для точки используются две координаты (L, B). Они характеризуют магнитную оболочку (параметр Мак-Илвайна) и индукцию поля L. Последний - параметр, равный соотношению среднего удаления сферы от центра планеты к его радиусу.

"Магнитное наклонение"

Несколько тысячелетий назад китайцы сделали удивительное открытие. Они выяснили, что намагниченные предметы способны располагаться в определённом направлении. А в середине шестнадцатого века Георг Картманн - немецкий учёный - сделал очередное открытие в этой области. Так появилось понятие "магнитное наклонение". Под этим названием подразумевается угол отклонения стрелки вверх либо вниз от горизонтальной плоскости под влиянием магнитосферы планеты.

Из истории исследований

В области северного магнитного экватора, отличного от географического, северный конец отходит вниз, а в южном, наоборот, - вверх. В 1600 году английским врачом Уильямом Гильбертом впервые были сделаны предположения о наличии магнитного поля Земли, вызывающего определённое поведение предметов, предварительно намагниченных. В своей книге он описал опыт с шаром, снабжённым железной стрелкой. В результате исследований он пришёл к выводу о том, что Земля представляет собой большой магнит. Эксперименты проводил и английский астроном Генри Геллибрант. В результате своих наблюдений он пришёл к выводу о том, что магнитное поле Земли подвержено медленным изменениям.

Хосе де Акоста описал возможность использования компаса. Он также установил, чем отличаются Магнитный и Северный полюсы, а в его знаменитой Истории (1590) была обоснована теория о линиях без магнитного отклонения. Значительный вклад в изучение рассматриваемого вопроса внес и Христофор Колумб. Ему принадлежит открытие непостоянства магнитного склонения. Трансформации поставлены в зависимость от изменения географических координат. Магнитное склонение - это угол отклонения стрелки от направления Север-Юг. В связи с открытием Колумба активизировалось исследование. Сведения о том, что собой представляет магнитное поле Земли, крайне необходимы были мореплавателям. Работал над этой проблемой и М. В. Ломоносов. Он для изучения земного магнетизма рекомендовал вести системные наблюдения, используя для этого постоянные пункты (подобие обсерваторий). Также очень важно было, по мнению Ломоносова, это осуществлять и на море. Эта мысль великого учёного была реализована в России спустя шестьдесят лет. Открытие Магнитного полюса на Канадском архипелаге принадлежит полярному исследователю англичанину Джону Россу (1831 год). А в 1841 он же открыл другой полюс планеты, но уже в Антарктиде. Гипотезу о происхождении магнитного поля Земли выдвинул Карл Гаусс. Вскоре он же доказал, что большая часть его питается из источника внутри планеты, но причина его незначительных отклонений находится во внешней среде.

Эти глобальные модели - такие как Международное геомагнитное аналитическое поле (International Geomagnetic Reference Field, IGRF) и Всемирная магнитная модель (World Magnetic Model, WMM) - создаются различными международными геофизическими организациями, и каждые 5 лет утверждаются и публикуются обновлённые наборы коэффициентов Гаусса, определяющих все данные о состоянии геомагнитного поля и его параметрах . Так, согласно модели WMM2015, северный геомагнитный полюс (по сути это южный полюс магнита) имеет координаты 80,37° с. ш. и 72,62° з. д., южный геомагнитный полюс - 80,37° ю. ш., 107,38° в. д., наклон оси диполя относительно оси вращения Земли - 9,63° .

Поля мировых аномалий

Реальные силовые линии магнитного поля Земли, хотя в среднем и близки к силовым линиям диполя, отличаются от них местными нерегулярностями, связанными с наличием намагниченных пород в коре , расположенных близко к поверхности. Из-за этого в некоторых местах на земной поверхности параметры поля сильно отличаются от значений в близлежащих районах, образуя так называемые магнитные аномалии . Они могут накладываться одна на другую, если вызывающие их намагниченные тела залегают на разных глубинах .

Существование магнитных полей протяжённых локальных областей внешних оболочек приводит к тому, что истинные магнитные полюса - точки (вернее, небольшие области), в которых силовые линии магнитного поля абсолютно вертикальны, - не совпадают с геомагнитными, при этом они лежат не на самой поверхности Земли, а под ней . Координаты магнитных полюсов на тот или иной момент времени также вычисляются в рамках различных моделей геомагнитного поля путём нахождения итеративным методом всех коэффициентов в ряду Гаусса. Так, согласно актуальной модели WMM, в 2015 г. северный магнитный полюс находился в точке 86° с. ш., 159° з. д., а южный - 64° ю. ш., 137° в.д . Значения актуальной модели IGRF12 немного отличаются: 86,3° с. ш., 160° з. д., для северного полюса, 64,3° ю. ш., 136,6° в.д для южного .

Соответственно, магнитная ось - прямая, проходящая через магнитные полюса, - не проходит через центр Земли и не является её диаметром .

Положения всех полюсов постоянно смещаются - геомагнитный полюс прецессирует относительно географического с периодом около 1200 лет .

Внешнее магнитное поле

Оно определяется источниками в виде токовых систем, находящимися за пределами земной поверхности в её атмосфере . В верхней части атмосферы (100 км и выше) - ионосфере - её молекулы ионизируются, формируя плазму , поэтому эта часть магнитосферы Земли, простирающаяся на расстояние до трёх её радиусов, называется плазмосферой . Плазма удерживается магнитным полем Земли, но её состояние определяется его взаимодействием с солнечным ветром - потоком плазмы солнечной короны .

Таким образом, на большем удалении от поверхности Земли магнитное поле несимметрично, так как искажается под действием солнечного ветра: со стороны Солнца оно сжимается, а в направлении от Солнца приобретает «шлейф», который простирается на сотни тысяч километров, выходя за орбиту Луны . Эта своеобразная «хвостатая» форма возникает, когда плазма солнечного ветра и солнечных корпускулярных потоков как бы обтекают земную магнитосферу - область околоземного космического пространства, ещё контролируемая магнитным полем Земли, а не Солнца и других межпланетных источников ; она отделяется от межпланетного пространства магнитопаузой , где динамическое давление солнечного ветра уравновешивается давлением собственного магнитного поля. Подсолнечная точка магнитосферы в среднем находится на расстоянии 10 земных радиусов * R ⊕ ; при слабом солнечном ветре это расстояние достигает 15-20 R ⊕ , а в период магнитных возмущений на Земле магнитопауза может заходить за геостационарную орбиту (6,6 R ⊕) . Вытянутый хвост на ночной стороне имеет диаметр около 40 R ⊕ и длину более 900 R ⊕ ; начиная с расстояния примерно 8 R ⊕ , он разделен на части плоским нейтральным слоем, в котором индукция поля близка к нулю .

Геомагнитное поле вследствие специфической конфигурации линий индукции создает для заряженных частиц - протонов и электронов - магнитную ловушку. Оно захватывает и удерживает огромное их количество, так что магнитосфера является своеобразным резервуаром заряженных частиц. Общая их масса, по различным оценкам, составляет от 1 кг до 10 кг. Они формируют так называемый радиационный пояс , охватывающий Землю со всех сторон, кроме приполярных областей. Его условно разделяют на два - внутренний и внешний. Нижняя граница внутреннего пояса находится на высоте около 500 км, его толщина - несколько тысяч километров. Внешний пояс находится на высоте 10-15 тыс. км. Частицы радиационного пояса под действием силы Лоренца совершают сложные периодические движения из Северного полушария в Южное и обратно, одновременно медленно перемещаясь вокруг Земли по азимуту. В зависимости от энергии они совершают полный оборот вокруг Земли за время от нескольких минут до суток .

Магнитосфера не подпускает к земле потоки космических частиц . Однако в её хвосте, на больших расстояниях от Земли напряженность геомагнитного поля, а следовательно, и его защитные свойства, ослабляются, и некоторые частицы солнечной плазмы получают возможность попасть вовнутрь магнитосферы и магнитных ловушек радиационных поясов. Хвост таким образом служит местом формирования потоков высыпающихся частиц, вызывающих полярные сияния и авроральные токи . В полярных областях часть потока солнечной плазмы вторгается в верхние слои атмосферы из радиационного пояса Земли и, сталкиваясь с молекулами кислорода и азота, возбуждает их или ионизирует, а при обратном переходе в невозбужденное состояние атомы кислорода излучают фотоны с λ = 0,56 мкм и λ = 0,63 мкм, ионизированные же молекулы азота при рекомбинации высвечивают синие и фиолетовые полосы спектра. При этом наблюдаются полярные сияния, особенно динамичные и яркие во время магнитных бурь . Они происходят при возмущениях в магнитосфере, вызванных увеличением плотности и скорости солнечного ветра при усилении солнечной активности .

Параметры поля

Наглядное представление о положении линий магнитной индукции поля Земли даёт магнитная стрелка, закреплённая таким образом, что может свободно вращаться и вокруг вертикальной, и вокруг горизонтальной оси (например, в кардановом подвесе), - в каждой точке вблизи поверхности Земли она устанавливается определённым образом вдоль этих линий.

Поскольку магнитные и географические полюса не совпадают, магнитная стрелка указывает направление с севера на юг только приблизительно. Вертикальную плоскость, в которой устанавливается магнитная стрелка, называют плоскостью магнитного меридиана данного места, а линию, по которой эта плоскость пересекается с поверхностью Земли, - магнитным меридианом . Таким образом, магнитные меридианы - это проекции силовых линий магнитного поля Земли на её поверхность, сходящиеся в северном и южном магнитных полюсах . Угол между направлениями магнитного и географического меридианов называют магнитным склонением . Оно может быть западным (часто обозначается знаком «-») или восточным (обозначается знаком «+»), в зависимости от того, к западу или востоку отклоняется северный полюс магнитной стрелки от вертикальной плоскости географического меридиана .

Далее, линии магнитного поля Земли, вообще говоря, не параллельны её поверхности. Это означает, что магнитная индукция поля Земли не лежит в плоскости горизонта данного места, а образует с этой плоскостью некий угол - он называется магнитным наклонением . Оно близко к нулю лишь в точках магнитного экватора - окружности большого круга в плоскости, которая перпендикулярна к магнитной оси .

Магнитное склонение и магнитное наклонение определяют направление магнитной индукции поля Земли в каждом конкретном месте. А численное значение этой величины можно найти, зная наклонение и одну из проекций вектора магнитной индукции B {\displaystyle \mathbf {B} } - на вертикальную или горизонтальную ось (последнее оказывается более удобным на практике). Таким образом, три этих параметра - магнитное склонение, наклонение и модуль вектора магнитной индукции B (либо вектора напряжённости магнитного поля H {\displaystyle \mathbf {H} } ) - полностью характеризуют геомагнитное поле в данном месте. Их точное знание для максимально большого числа пунктов на Земле имеет чрезвычайно важное значение . Составляются специальные магнитные карты, на которых нанесены изогоны (линии одинакового склонения) и изоклины (линии одинакового наклонения), необходимые для ориентации с помощью компаса .

В среднем интенсивность магнитного поля Земли колеблется от 25,000 до 65,000 нТл (0,25 - 0,65 Гс) и сильно зависит от географического положения . Это соответствует средней напряжённости поля около 0,5 (40 /) . На магнитном экваторе её величина - около 0,34 , у магнитных полюсов - около 0,66 Э. В некоторых районах (магнитных аномалий) напряжённость резко возрастает: в районе Курской магнитной аномалии она достигает 2 Э .

Природа магнитного поля Земли

Впервые объяснить существование магнитных полей Земли и Солнца попытался Дж. Лармор в 1919 году , предложив концепцию динамо , согласно которой поддержание магнитного поля небесного тела происходит под действием гидродинамического движения электропроводящей среды. Однако в 1934 году Т. Каулинг доказал теорему о невозможности поддержания осесимметричного магнитного поля посредством гидродинамического динамо-механизма. А поскольку большинство изучаемых небесных тел (и тем более Земля) считались аксиально-симметричными, на основании этого можно было сделать предположение, что их поле тоже будет аксиально-симметричным, и тогда его генерация по такому принципу будет невозможна согласно этой теореме. Позже было показано, что не у всех уравнений с аксиальной симметрией, описывающих процесс генерации магнитного поля, решение будет аксиально-симметричным, и в 1950-х гг. несимметричные решения были найдены .

С тех пор теория динамо успешно развивается, и на сегодняшний день общепринятым наиболее вероятным объяснением происхождения магнитного поля Земли и других планет является самовозбуждающийся динамо-механизм, основанный на генерации электрического тока в проводнике при его движении в магнитном поле, порождаемом и усиливаемом самими этими токами. Необходимые условия создаются в ядре Земли : в жидком внешнем ядре , состоящем в основном из железа при температуре порядка 4-6 тысяч кельвин, которое отлично проводит ток, создаются конвективные потоки, отводящие тепло от твёрдого внутреннего ядра (генерируемого благодаря распаду радиоактивных элементов либо освобождению скрытой теплоты при затвердевании вещества на границе между внутренним и внешним ядром по мере постепенного остывания планеты). Силы Кориолиса закручивают эти потоки в характерные спирали, образующие так называемые столбы Тейлора . Благодаря трению слоёв они приобретают электрический заряд, формируя контурные токи. Таким образом, создаётся система токов, циркулирующих по проводящему контуру в движущихся в (изначально присутствующем, пусть и очень слабом) магнитном поле проводниках, как в диске Фарадея . Она создает магнитное поле, которое при благоприятной геометрии течений усиливает начальное поле, а это, в свою очередь, усиливает ток, и процесс усиления продолжается до тех пор, пока растущие с увеличением тока потери на джоулево тепло не уравновесят притоки энергии, поступающей за счет гидродинамических движений .

Математически этот процесс описывается дифференциальным уравнением

∂ B ∂ t = η ∇ 2 B + ∇ × (u × B) {\displaystyle {\frac {\partial \mathbf {B} }{\partial t}}=\eta \mathbf {\nabla } ^{2}\mathbf {B} +\mathbf {\nabla } \times (\mathbf {u} \times \mathbf {B})} ,

где u - скорость потока жидкости, B - магнитная индукция , η = 1/μσ - магнитная вязкость , σ - электропроводность жидкости, а μ - магнитная проницаемость , практически не отличающаяся при такой высокой температуре ядра от μ 0 - проницаемости вакуума.

Однако для полного описания необходимо записать систему магнитогидродинамических уравнений. В приближении Буссинеска (в рамках которого все физические характеристики жидкости полагаются постоянными, кроме силы Архимеда , при расчёте которой учитываются изменения плотности вследствие разности температур) это :

  • Уравнение Навье - Стокса , содержащее члены, выражающие совокупное действие вращения и магнитного поля:
ρ 0 (∂ u ∂ t + u ⋅ ∇ u) = − ∇ P + ρ 0 ν ∇ 2 u + ρ g ¯ − 2 ρ 0 Ω × u + J × B {\displaystyle \rho _{0}\left({\frac {\partial \mathbf {u} }{\partial t}}+\mathbf {u} \cdot \mathbf {\nabla } \mathbf {u} \right)=-\nabla \mathbf {P} +\rho _{0}\nu \mathbf {\nabla } ^{2}\mathbf {u} +\rho {\bar {\mathbf {g} }}-2\rho _{0}\mathbf {\Omega } \times \mathbf {u} +\mathbf {J} \times \mathbf {B} } .
  • Уравнение теплопроводности , выражающее закон сохранения энергии :
∂ T ∂ t + u ⋅ ∇ T = κ ∇ 2 T + ϵ {\displaystyle {\frac {\partial T}{\partial t}}+\mathbf {u} \cdot \mathbf {\nabla } T=\kappa \mathbf {\nabla } ^{2}T+\epsilon } ,

Прорыв в этом отношении был достигнут в 1995 году в работах групп из Японии и Соединённых Штатов . Начиная с этого момента, результаты ряда работ численного моделирования удовлетворительно воспроизводят качественные характеристики геомагнитного поля в динамике, в том числе инверсии .

Изменения магнитного поля Земли

Это подтверждается и текущим возрастанием угла раствора каспов (полярных щелей в магнитосфере на севере и юге), который к середине 1990-х годов достиг 45°. В расширившиеся щели устремился радиационный материал солнечного ветра, межпланетного пространства и космических лучей, вследствие чего в полярные области поступает большее количество вещества и энергии, что может привести к дополнительному разогреву полярных шапок [ ] .

Геомагнитные координаты (координаты Мак-Илвайна)

В физике космических лучей широко используются специфические координаты в геомагнитном поле, названные в честь учёного Карла Мак-Илвайна (Carl McIlwain ), первым предложившего их использование , так как они основаны на инвариантах движения частиц в магнитном поле. Точка в дипольном поле характеризуется двумя координатами (L, B), где L - так называемая магнитная оболочка, или параметр Мак-Илвайна (англ. L-shell, L-value, McIlwain L-parameter ), B - магнитная индукция поля (обычно в Гс). За параметр магнитной оболочки обычно принимается величина L, равная отношению среднего удаления реальной магнитной оболочки от центра Земли в плоскости геомагнитного экватора, к радиусу Земли. .

История исследований

Ещё несколько тысячелетий назад в Древнем Китае было известно, что намагниченные предметы располагаются в определённом направлении, в частности стрелка компаса всегда занимает определённое положение в пространстве. Благодаря этому человечество с давних пор получило возможность при помощи такой стрелки (компаса) ориентироваться в открытом море вдали от берегов. Однако до плавания Колумба из Европы в Америку (1492 г.) особого внимания к исследованию такого явления никто не проявлял, так как ученые того времени полагали, что оно происходит в результате притяжения стрелки Полярной звездой . В Европе и омывающих её морях компас в то время устанавливался почти по географическому меридиану. При пересечении же Атлантического океана Колумб заметил, что примерно на полпути между Европой и Америкой стрелка компаса отклонилась почти на 12° к западу. Этот факт сразу же породил сомнение в правильности прежней гипотезы о притяжении стрелки Полярной звездой, дал толчок к серьезному изучению вновь открытого явления: сведения о магнитном поле Земли были нужны мореплавателям. С этого момента и получила свое начало наука о земном магнетизме, начались повсеместные измерения магнитного склонения , то есть угла между географическим меридианом и осью магнитной стрелки, то есть магнитным меридианом. В 1544 году немецкий учёный Георг Хартман открыл новое явление: магнитная стрелка не только отклоняется от географического меридиана, но, будучи подвешена за центр тяжести, стремится встать под некоторым углом к горизонтальной плоскости, названным магнитным наклонением .

С этого момента наряду с изучением явления отклонения ученые начали также исследовать и наклонение магнитной стрелки. У Хосе де Акосты (одного из основателей геофизики , по словам Гумбольдта) в его Истории (1590) впервые появилась теория о четырёх линиях без магнитного склонения. Он описал использование компаса, угол отклонения, различия между Магнитным и Северным полюсом, а также колебание отклонений от одной точки до другой, идентифицировал места с нулевым отклонением, например, на Азорских островах .

В результате наблюдений было установлено, что как склонение, так и наклонение имеют различные значения в разных точках земной поверхности. При этом их изменения от точки к точке подчиняются некоторой сложной закономерности. Её исследование позволило придворному врачу английской королевы Елизаветы и натурфилософу Уильяму Гильберту выдвинуть в 1600 году в своей книге «О магните» («De Magnete») гипотезу о том, что Земля представляет собой магнит, полюсы которого совпадают с географическими полюсами. Другими словами, У. Гильберт полагал, что поле Земли подобно полю намагниченной сферы. Свое утверждение У. Гильберт основывал на опыте с моделью нашей планеты, представляющей собой намагниченный железный шар, и маленькой железной стрелкой. Главным аргументом в пользу своей гипотезы Гильберт считал, что магнитное наклонение, измеренное на такой модели, оказалось почти одинаковым с наклонением, наблюдавшимся на земной поверхности. Несоответствие же земного склонения со склонением на модель Гильберт объяснял отклоняющим действием материков на магнитную стрелку. Хотя многие факты, установленные позднее, не совпадали с гипотезой Гильберта, она не теряет своего значения и до сих пор. Основная мысль Гильберта о том, что причину земного магнетизма следует искать внутри Земли, оказалась правильной, равно как и то, что в первом приближении Земля действительно является большим магнитом, представляющим собой однородно намагниченный шар .

В 1634 году английский астроном Генри Геллибранд ?! установил, что магнитное склонение в Лондоне меняется со временем. Это стало первым зафиксированным свидетельством вековых вариаций - регулярных (от года к году) изменений средних годовых значений компонентов геомагнитного поля .

Углы склонения и наклонения определяют направление в пространстве напряженности магнитного поля Земли, но не могут дать её численного значения. До конца XVIII в. измерения величины напряженности не производились по той причине, что не были известны законы взаимодействия между магнитным полем и намагниченными телами. Лишь после того, как в 1785-1789 гг. французским физиком Шарлем Кулоном был установлен закон, названный его именем , появилась возможность таких измерений. С конца XVIII в., наряду с наблюдением склонения и наклонения, начались повсеместные наблюдения горизонтальной составляющей, представляющей собой проекцию вектора напряженности магнитного поля на горизонтальную плоскость (зная же склонение и наклонение, можно рассчитать и величину полного вектора напряженности магнитного поля) .

Первая теоретическая работа о том, что представляет собой магнитное поле Земли, то есть каковы величина и направление его напряженности в каждой точке земной поверхности, принадлежит немецкому математику Карлу Гауссу . В 1834 г. он дал математическое выражение для составляющих напряженности как функции координат - широты и долготы места наблюдения. Пользуясь этим выражением, можно для каждой точки земной поверхности найти значения любой из составляющих, которые носят названия элементов земного магнетизма. Эта и другие работы Гаусса стали фундаментом, на котором построено здание современной науки о земном магнетизме . В частности, в 1839 году он доказал, что основная часть магнитного поля выходит из Земли, а причину небольших, коротких отклонений его значений необходимо искать во внешней среде .

В 1831 году английским полярным исследователем Джоном Россом в Канадском архипелаге был открыт северный магнитный полюс - область, где магнитная стрелка занимает вертикальное положение, то есть наклонение равно 90°. А в 1841 г. Джеймс Росс (племянник Джона Росса) достиг другого магнитного полюса Земли , находящегося в Антарктиде .

См. также

  • Intermagnet (англ. )

Примечания

  1. Ученые в США выяснили, что магнитное поле Земли на 700 млн лет старше, чем считалось
  2. Эдвард Кононович. Магнитное поле Земли (неопр.) . http://www.krugosvet.ru/ . Энциклопедия Кругосвет: Универсальная научно-популярная онлайн-энциклопедия. Проверено 2017-04-26 .
  3. Geomagnetism Frequently Asked Questions (англ.) . https://www.ngdc.noaa.gov/ngdc.html . National Centers for Environmental Information (NCEI). Проверено 23 апреля 2017.
  4. А. И. Дьяченко. Магнитные полюса Земли . - Москва: Издательство Московского центра непрерывного математического образования, 2003. - 48 с. - ISBN 5-94057-080-1 .
  5. А. В. Викулин. VII. Геомагнитное поле и электромагнетизм Земли // Введение в физику Земли. Учебное пособие для геофизических специальностей вузов.. - Издательство Камчатского государственного педагогического университета, 2004. - 240 с. - ISBN 5-7968-0166-X .