Уравнение прямой через точку параллельную прямую. Уравнение параллельной прямой

  • 21.09.2019

Направляющим вектором прямой l называется всякий ненулевой вектор (m , n ), параллельный этой прямой.

Пусть заданы точка M 1 (x 1 , y 1) и направляющий вектор (m , n ), тогда уравнение прямой, проходящей через точку M 1 в направлении вектора имеет вид: . Это уравнение называется каноническим уравнением прямой.

Пример. Найти уравнение прямой с направляющим вектором (1, -1) и проходящей через точку А(1, 2).

Уравнение искомой прямой будем искать в виде: Ax + By + C = 0. Запишем каноническое уравнение прямой , преобразуем его. Получим х + у - 3 = 0

Уравнение прямой, проходящей через две точки

Пусть на плоскости заданы две точки M 1 (x 1 , y 1) и M 2 (x 2, y 2), тогда уравнение прямой, проходящей через эти точки имеет вид: . Если какой- либо из знаменателей равен нулю, следует приравнять нулю соответствующий числитель.

Пример. Найти уравнение прямой, проходящей через точки А(1, 2) и В(3, 4).

Применяя записанную выше формулу, получаем: ,

Уравнение прямой по точке и угловому коэффициенту

Если общее уравнение прямой Ах + Ву + С = 0 привести к виду: и обозначить , то полученное уравнение называется уравнением прямой с угловым коэффициентом k.

Уравнение прямой в отрезках

Если в общем уравнении прямой Ах + Ву + С = 0 коэффициент С ¹ 0, то, разделив на С, получим: или , где

Геометрический смысл коэффициентов в том, что коэффициент а является координатой точки пересечения прямой с осью Ох , а b – координатой точки пересечения прямой с осью Оу .

Пример. Задано общее уравнение прямой х у + 1 = 0. Найти уравнение этой прямой в отрезках. А = -1, В = 1, С = 1, тогда а = -1, b = 1. Уравнение прямой в отрезках примет вид .

Пример. Даны вершины треугольника А(0; 1), B(6; 5), C(12; -1). Найти уравнение высоты, проведенной из вершины С.

Находим уравнение стороны АВ: ;

4x = 6y – 6; 2x – 3y + 3 = 0;

Искомое уравнение высоты имеет вид: Ax + By + C = 0 или y = kx + b .

k = . Тогда y = . Т.к. высота проходит через точку С, то ее координаты удовлетворяют данному уравнению: откуда b = 17. Итого: .

Ответ: 3x + 2y – 34 = 0.


Практическое занятие №7

Наименование занятия: Кривые второго порядка.

Цель занятия: Научиться составлять кривых 2-го порядка, строить их.

Подготовка к занятию: Повторить теоретический материал по теме «Кривые 2-го порядка»

Литература:

  1. Дадаян А.А. «Математика», 2004г.

Задание на занятие:

Порядок проведения занятия:

  1. Получить допуск к работе
  2. Выполнить задания
  3. Ответить на контрольные вопросы.
  1. Наименование, цель занятия, задание;
  2. Выполненное задание;
  3. Ответы на контрольные вопросы.

Контрольные вопросы для зачета:

  1. Дать определение кривых второго порядка (окружности, эллипса, гиперболы, параболы), записать их канонические уравнения.
  2. Что называется эксцентриситетом эллипса, гиперболы? Как его найти?
  3. Записать уравнение равносторонней гиперболы

ПРИЛОЖЕНИЕ

Окружностью называется множество всех точек плоскости, равноудаленных от одной точки, называемой центром.

Пусть центром окружности является точка О (a; b ), а расстояние до любой точки М (х;у ) окружности равно R . Тогда (x – a ) 2 + (y – b ) 2 = R 2 – каноническое уравнение окружности с центром О (a; b ) и радиусом R.

Пример. Найти координаты центра и радиус окружности, если ее уравнение задано в виде: 2x 2 + 2y 2 – 8x + 5y – 4 = 0.

Для нахождения координат центра и радиуса окружности данное уравнение необходимо привести к каноническому виду. Для этого выделим полные квадраты:

x 2 + y 2 – 4x + 2,5y – 2 = 0

x 2 – 4x + 4 – 4 + y 2 + 2,5y + 25/16 – 25/16 – 2 = 0

(x – 2) 2 + (y + 5/4) 2 – 25/16 – 6 = 0

(x – 2) 2 + (y + 5/4) 2 = 121/16

Отсюда находим координаты центра О (2; -5/4); радиус R = 11/4.

Эллипсом называется множество точек плоскости, сумма расстояний от каждой из которых до двух заданных точек (называемых фокусами) есть величина постоянная, большая, чем расстояние между фокусами.

Фокусы обозначаются буквами F 1 , F с , сумма расстояний от любой точки эллипса до фокусов – 2а (2а > 2c ), a – большая полуось; b – малая полуось.

Каноническое уравнение эллипса имеет вид: , где a , b и c связаны между собой равенствами: a 2 – b 2 = c 2 (или b 2 – a 2 = c 2).

Форма эллипса определяется характеристикой, которая является отношением фокусного расстояния к длине большей оси и называется эксцентриситетом. или .

Т.к. по определению 2а > 2c , то эксцентриситет всегда выражается правильной дробью, т.е. .

Пример. Составить уравнение эллипса, если его фокусы F 1 (0; 0), F 2 (1; 1), большая ось равна 2.

Уравнение эллипса имеет вид: .

Расстояние между фокусами: 2c = , таким образом, a 2 – b 2 = c 2 = . По условию 2а = 2, следовательно, а = 1, b = Искомое уравнение эллипса примет вид: .

Гиперболой называется множество точек плоскости, разность расстояний от каждой из которых до двух заданных точек, называемых фокусами, есть величина постоянная, меньшая расстояния между фокусами.

Каноническое уравнение гиперболы имеет вид: или , где a , b и c связаны между собой равенством a 2 + b 2 = c 2 . Гипербола симметрична относительно середины отрезка, соединяющего фокусы и относительно осей координат. Фокусы обозначаются буквами F 1 , F 2 , расстояние между фокусами – 2с , разность расстояний от любой точки гиперболы до фокусов – 2а (2а < 2c ). Ось 2а называется действительной осью гиперболы, ось 2b – мнимой осью гиперболы. Гипербола имеет две асимптоты, уравнения которых

Эксцентриситетом гиперболы называется отношение расстояния между фокусами к длине действительной оси: или . Т.к. по определению 2а < 2c , то эксцентриситет гиперболы всегда выражается неправильной дробью, т.е. .

Если длина действительной оси равна длине мнимой оси, т.е. а = b , ε = , то гипербола называется равносторонней .

Пример. Составить каноническое уравнение гиперболы, если ее эксцентриситет равен 2, а фокусы совпадают с фокусами эллипса с уравнением

Находим фокусное расстояние c 2 = 25 – 9 = 16.

Для гиперболы: c 2 = a 2 + b 2 = 16, ε = c/a = 2; c = 2a ; c 2 = 4a 2 ; a 2 = 4; b 2 = 16 – 4 = 12.

Тогда - искомое уравнение гиперболы.

Параболой называется множество точек плоскости, равноудаленных от заданной точки, называемой фокусом, и данной прямой, называемой директрисой.

Фокус параболы обозначается буквой F , директриса – d , расстояние от фокуса до директрисы – р .

Каноническое уравнение параболы, фокус которой расположен на оси абсцисс, имеет вид:

y 2 = 2px или y 2 = -2px

x = -p /2, x = p /2

Каноническое уравнение параболы, фокус которой расположен на оси ординат, имеет вид:

х 2 = 2 или х 2 = -2

Уравнения директрис соответственно у = -p /2, у = p /2

Пример. На параболе у 2 = 8х найти точки, расстояние которой от директрисы равно 4.

Из уравнения параболы получаем, что р = 4. r = x + p /2 = 4; следовательно:

x = 2; y 2 = 16; y = ±4. Искомые точки: M 1 (2; 4), M 2 (2; -4).


Практическое занятие №8

Наименование занятия: Действия над комплексными числами в алгебраической форме. Геометрическая интерпретация комплексных чисел .

Цель занятия: Научиться выполнять действия над комплексными числами.

Подготовка к занятию: Повторить теоретический материал по теме «Комплексные числа».

Литература:

  1. Григорьев В.П., Дубинский Ю.А. «Элементы высшей математики», 2008г.

Задание на занятие:

  1. Вычислить:

1) i 145 + i 147 + i 264 + i 345 + i 117 ;

2) (i 64 + i 17 + i 13 + i 82)·(i 72 – i 34);

Свойства прямой в евклидовой геометрии.

Через любую точку можно провести бесконечно много прямых.

Через любые две несовпадающие точки можно провести единственную прямую.

Две несовпадающие прямые на плоскости или пересекаются в единственной точке, или являются

параллельными (следует из предыдущего).

В трёхмерном пространстве существуют три варианта взаимного расположения двух прямых:

  • прямые пересекаются;
  • прямые параллельны;
  • прямые скрещиваются.

Прямая линия — алгебраическая кривая первого порядка: в декартовой системе координат прямая линия

задается на плоскости уравнением первой степени (линейное уравнение).

Общее уравнение прямой.

Определение . Любая прямая на плоскости может быть задана уравнением первого порядка

Ах + Ву + С = 0,

причем постоянные А, В не равны нулю одновременно. Это уравнение первого порядка называют общим

уравнением прямой. В зависимости от значений постоянных А, В и С возможны следующие частные случаи:

. C = 0, А ≠0, В ≠ 0 - прямая проходит через начало координат

. А = 0, В ≠0, С ≠0 { By + C = 0} - прямая параллельна оси Ох

. В = 0, А ≠0, С ≠ 0 { Ax + C = 0} - прямая параллельна оси Оу

. В = С = 0, А ≠0 - прямая совпадает с осью Оу

. А = С = 0, В ≠0 - прямая совпадает с осью Ох

Уравнение прямой может быть представлено в различном виде в зависимости от каких - либо заданных

начальных условий.

Уравнение прямой по точке и вектору нормали.

Определение . В декартовой прямоугольной системе координат вектор с компонентами (А, В)

перпендикулярен прямой, заданной уравнением

Ах + Ву + С = 0.

Пример . Найти уравнение прямой, проходящей через точку А(1, 2) перпендикулярно вектору (3, -1).

Решение . Составим при А = 3 и В = -1 уравнение прямой: 3х - у + С = 0. Для нахождения коэффициента С

подставим в полученное выражение координаты заданной точки А. Получаем: 3 - 2 + C = 0, следовательно

С = -1. Итого: искомое уравнение: 3х - у - 1 = 0.

Уравнение прямой, проходящей через две точки.

Пусть в пространстве заданы две точки M 1 (x 1 , y 1 , z 1) и M2 (x 2, y 2 , z 2), тогда уравнение прямой ,

проходящей через эти точки:

Если какой-либо из знаменателей равен нулю, следует приравнять нулю соответствующий числитель. На

плоскости записанное выше уравнение прямой упрощается:

если х 1 ≠ х 2 и х = х 1 , если х 1 = х 2 .

Дробь = k называется угловым коэффициентом прямой .

Пример . Найти уравнение прямой, проходящей через точки А(1, 2) и В(3, 4).

Решение . Применяя записанную выше формулу, получаем:

Уравнение прямой по точке и угловому коэффициенту.

Если общее уравнение прямой Ах + Ву + С = 0 привести к виду:

и обозначить , то полученное уравнение называется

уравнением прямой с угловым коэффициентом k.

Уравнение прямой по точке и направляющему вектору.

По аналогии с пунктом, рассматривающим уравнение прямой через вектор нормали можно ввести задание

прямой через точку и направляющий вектор прямой.

Определение . Каждый ненулевой вектор (α 1 , α 2) , компоненты которого удовлетворяют условию

Аα 1 + Вα 2 = 0 называется направляющим вектором прямой.

Ах + Ву + С = 0.

Пример . Найти уравнение прямой с направляющим вектором (1, -1) и проходящей через точку А(1, 2).

Решение . Уравнение искомой прямой будем искать в виде: Ax + By + C = 0. В соответствии с определением,

коэффициенты должны удовлетворять условиям:

1 * A + (-1) * B = 0, т.е. А = В.

Тогда уравнение прямой имеет вид: Ax + Ay + C = 0, или x + y + C / A = 0.

при х = 1, у = 2 получаем С/ A = -3 , т.е. искомое уравнение:

х + у - 3 = 0

Уравнение прямой в отрезках.

Если в общем уравнении прямой Ах + Ву + С = 0 С≠0, то, разделив на -С, получим:

или , где

Геометрический смысл коэффициентов в том, что коэффициент а является координатой точки пересечения

прямой с осью Ох, а b - координатой точки пересечения прямой с осью Оу.

Пример . Задано общее уравнение прямой х - у + 1 = 0. Найти уравнение этой прямой в отрезках.

С = 1, , а = -1, b = 1.

Нормальное уравнение прямой.

Если обе части уравнения Ах + Ву + С = 0 разделить на число , которое называется

нормирующем множителем , то получим

xcosφ + ysinφ - p = 0 - нормальное уравнение прямой .

Знак ± нормирующего множителя надо выбирать так, чтобы μ * С < 0.

р - длина перпендикуляра, опущенного из начала координат на прямую,

а φ - угол, образованный этим перпендикуляром с положительным направлением оси Ох.

Пример . Дано общее уравнение прямой 12х - 5у - 65 = 0 . Требуется написать различные типы уравнений

этой прямой.

Уравнение этой прямой в отрезках :

Уравнение этой прямой с угловым коэффициентом : (делим на 5)

Уравнение прямой :

cos φ = 12/13; sin φ= -5/13; p = 5.

Следует отметить, что не каждую прямую можно представить уравнением в отрезках, например, прямые,

параллельные осям или проходящие через начало координат.

Угол между прямыми на плоскости.

Определение . Если заданы две прямые y = k 1 x + b 1 , y = k 2 x + b 2 , то острый угол между этими прямыми

будет определяться как

Две прямые параллельны, если k 1 = k 2 . Две прямые перпендикулярны,

если k 1 = -1/ k 2 .

Теорема .

Прямые Ах + Ву + С = 0 и А 1 х + В 1 у + С 1 = 0 параллельны, когда пропорциональны коэффициенты

А 1 = λА, В 1 = λВ . Если еще и С 1 = λС , то прямые совпадают. Координаты точки пересечения двух прямых

находятся как решение системы уравнений этих прямых.

Уравнение прямой, проходящей через данную точку перпендикулярно данной прямой.

Определение . Прямая, проходящая через точку М 1 (х 1 , у 1) и перпендикулярная к прямой у = kx + b

представляется уравнением:

Расстояние от точки до прямой.

Теорема . Если задана точка М(х 0 , у 0), то расстояние до прямой Ах + Ву + С = 0 определяется как:

Доказательство . Пусть точка М 1 (х 1 , у 1) - основание перпендикуляра, опущенного из точки М на заданную

прямую. Тогда расстояние между точками М и М 1 :

(1)

Координаты x 1 и у 1 могут быть найдены как решение системы уравнений:

Второе уравнение системы - это уравнение прямой, проходящей через заданную точку М 0 перпендикулярно

заданной прямой. Если преобразовать первое уравнение системы к виду:

A(x - x 0) + B(y - y 0) + Ax 0 + By 0 + C = 0,

то, решая, получим:

Подставляя эти выражения в уравнение (1), находим:

Теорема доказана.

у - у 1 =k(х - х 1)

уравнение прямой: у=kх+в

Если мы преобразуем первоначальное уравнение у - у 1 =k(х - х 1), то получим у=kх+(у 1 -kх 1) Оно удовлетворяет условия уравнения прямой: у=kх+в, т.к.

1. его степень первая, а значит оно может быть прямой,

2. прямая проходит через точку (х 1 ; у 1), т.к. координаты этой точки удовлетворяют уравнению: 0=0

3. роль коэфициента в играет выражение у 1 -kх 1

Прямая с уравнением у - у 1 =k(х - х 1) проходит через 1 точку. Потребуем, что бы и вторая точка лежала на этой прямой, т.е. что бы выполнялось равенство у 2 - у 1 =k(х 2 - х 1). Отсюда находим k= у 2 - у 1 ¸ х 2 - х 1 и подставим в уравнение:

у - у 1 = у 2 - у 1 ¸ х 2 - х 1 ×(х - х 1) или

х - х 1 ¸х 2 - х 1 = у - у 1 ¸у 2 - у 1

15.Угол м/у прямыми на плоскости

Прямые: у=k 1 х +в 1 , у=k 2 х +в 2

В тр-ке АВС сумма внутр. углов a 1 +b равна внешнему углу a 2 поэтому b=a 2 -a 1 Очевидно, tga 1 = k 1 ; tga 2 = k 2 .Проименяя формулу для tg разности 2х углов получим tgb=tg(a 2 -a 1)= tga 2 -tga 1 ¸1+ tga 2 ×tga 1

Окончательно имеем tgb= k 2 - k 1 ¸1+k 2 × ×k 1 Вычислив тангенс можно найти и сам угол b.

16. Условия || и ^ прямых на плоскости.


Даны уравнения прямых с угловым коэф. у=k 1 х и у=k 2 х +в 2

Условия || прямых -это равенство угловых коэф. к 1 =к 2 (1)

Условие (1) выполн. и для слившихся прямых. Формулу углового коэф. прямых (tga= k 2 - k 1 ¸1+k 2 × ×k 1) можно записать ввиде: ctga= 1+k 2 × ×k 1 ¸k 2 - k 1 (это в сслучае, если к 1 ¹к 2). Условие ^ прямых выражается равенством k 2 × ×k 1 = -1. Если к 1 =0 или к 2 =0, то одна из прямых || оси Ох, а вторая ей ^, имеет уравнение вида х=а.

Пусть прямые заданы общим уравнением. А 1 х+В 1 у+С 1 =0, А 2 х+В 2 у+С 2 =0, Если В1=В2=0, то обе прямые параллельны оси Оу и между собой (их уравнения имеют вид х=а) Если В1=0, а В2¹0, то прямые^. В случае когда А2=0 (уравнение приводится к виду х=а, у=в)В случае В1¹0 и В2¹0можно выразить у в каждом уравнении. у= -А1х¸В1-С1¸В1;

У= - А2х¸В2-С2¸В2, тогда к1= -А1¸В1, а к2= - А2¸В2 и условие || А1¸В1= А2¸В2 или А1¸А2= В1¸В2.

С помощью равенства 1+к1×к2=0, 1+ А1¸В1× А2¸В2=0. Приходим к условию ^прямых А1×А2+В1×В2=0.

Эллипс

Эллипсом называется геометрическое место точек плоскости, сумма расстояний которых до двух данных точек, называемых фокусами, есть величина постоянная (большая расстояния между фокусами)

Уравнение элипса примет самый простой вид, если фокусы разместить на оси Ох слева от начала координат на равном от него расстоянии. F 1 F 2 - фокусы эллипса. Обозначим F 1 F 2 = 2c тогда фокусы имеют координаты (-с,0) и (с,0). Расстояния о фокусов до текущей точки эллипса М обозначим r 1 и r 2 . Их называют фокальными радиусами. Постоянную величину r 1 + r 2 обозначим 2а: r 1 + r 2 =2а. помещая точку М в точки и А" легко сообразить, что А"А = 2а. Отрезки AA" и ВВ" называются осями эллипса, а отрезки ОА и ОВ - полуосями эллипса. Точки А,А",В,В" называют вершинами эллипса. Пусть М(х,у)находится в точке В, тогда r 1 = r 2 =а. Из тр-ка ВОF 2 ВО=ÖBF 2 2 -OF 2 2 Обозначим ВО=в, тогда в=Öа 2 - с 2 . Через полуосиэллипса а и в уравнение запишится так:

Это уравнение называют каноническим уравнением эллипса. Окружность - частный случай эллипса, получается при а=в=R(R - радикс окружности). Чем больше отличаются друг от друга полуоси а и в, тем более сплюснутым будет эллипс. Степень сплюснутости эллипса принято измерять эксцентриситетом

Очевидно, 0£ɛ£1. При ɛ=0 имеем окружность, с увеличением ɛэллипс все больше отличается от окружности, становясь более выпуклым.

Гипербола

Гиперболой называется геом. место точек плоскости, для которых абсолютная величина разности расстояний до двух данный точек, называемых фокусами, есть величина посоянная, не равная 0 и меньшая расстояния между фокусами. Фокусы F 1 и F 2 снова расположим на оси Ох в точках (-с,0), (с,0). Отрезки F 1 М = r 1 и F 2 М = r 2 называют фокальными радиусами. По определению |r 1 - r 2 | есть величина постоянная. Обозначим ее 2а: |r 1 - r 2 | =2а. Точки А и А" называют вершинами гиперболы. Легко понять, что АА" =2а. Действительно, для точки А r 1 =АF 1 а r 2 =АF 2 . Очевидно, АF 2 =А"F 1 ,поэтому r 1 - r 2 = АF 1 -АF 2 = АF 1 =А"F 1 = А"A. С другой стороны r 1 - r 2 =2а. Отрезок АА" называют действительной осью гиперболы. Пусть в=Öс 2 -а 2 Точки В и В" имеют координаты(0,в) и (0,-в). отрезок ВВ" называют мнимой осью гиперболы. Канонической уравнение гиперболы имеет вид:

у гиперболы 2 ветви, при а=в гиперола называется равнобочной. Уравнения у=вх¸а и у=-вх¸а. Они называются асимптотами. Если точка удаляется по любой из ветвей гиперболы, то ее расстояние до соответствующей асимптоты стремиться к 0. Для гиперболы эксцентриситет принимает зн-ия большие 1.

Парабола.

Параболой называется геометрическое место точек плоскости, равноудаленных от данной прямой, называемой директрисой, и от данной точки, не принадлежащей директрисе, называемой фокусом. Обозначим расстояние между фокусом и директрисой через р. Канонической уравнение параболы имеет вид:

у 2 =2рх и получается, если фокус F поместить в точку (р¸2, 0), а в качестве директрисы взять прямую х = - р¸2. Число р называют параметром параболы, точку (0,0) - ее вершиной.

20. Плоскость в пространстве: общее уравнение, геометрический смысл коэфициентов, уравнение плоскости., проходящей через заданную точку пространства.

Общее уравнение плоскости: Ах+Ву+Сz +D=0, в котором хотя бы один из коэффициентов А,В,С отличен от 0. Эти коэффициенты имеют опред. Геом. смысл

Зададим положение плоскости с помощью некоторой точки М 0 (х 0 ,у 0 ,z 0) и ненулевого вектора N(А,В,С), перпендекулярного плоскости. По этим данным плоскость определяется однозначно. Пусть М(х,у,z) - текущая точка плоскости. Векторы N(А,В,С) и М 0 М(х-х 0 ,у-у 0 ,z-z 0) ортогональны, поэтому их скалярное произведение равно)

А(х-х 0)+В(у-у 0)+С(z-z 0)=0 (1)

После преобразований получаем уравнение:

Ах+Ву+Сz+D=0, где D = -Ах 0 -В 0- Сz 0

Следовательно, А,В,С - координаты вектора, перпендекулярного плоскости, заданной общим уравнением.

Множество плоскостей, описываемых уравнением (1), при фиксированной точке (х 0 ,у 0 ,z 0) и переменных коэфициентах А,В,С называются связкой плоскостей. Когда среди условий, задающих искомую плоскость, значится ее точка М 0 (х 0 ,у 0 ,z 0), можно начинать решение задачи с применения уравнения (1). Плоскость так же называют поверностью первого порядка.

Сфера,

Сфера . Уравнение сферы, центр которой находится в начале координат: х 2 +у 2 +z 2 =R 2 . Пусть теперь центр расположен в точке М 0 (х 0 ,у 0 ,z 0)

Текущая точка М(х,у,z) сферы находится на расстоянии R от т. М.

Из равенства ММ 0 2 =R 2 получаем: (х-х 0) 2 +(у-у 0) 2 +(z-z 0) 2 =R 2

Эллипсоид канонич. уравнение:

А,в,с - полуоси эллипсоида. При а=в получается эллипсоид вращения. Такую форму имеет поверхность нашей планеты. При а=в=с эллипсоид превращается в сферы радиуса R=а

Параболоид вращения

В плоскости уОz рассмотрим параболу у 2 =2рz. Поверхность, образованная вращением этой параболы вокруг оси Oz называется параболоидом вращения.

Пусть М(х,у,z) - произвольная точка поверхности, а М 0 - точка с той же аппликатой z, лежащая на параболе у 2 =2рz. Т.к. О"М=О" М 0 , то у 2 для точки М 0 можно заменить в уравнении на х 2 +у 2 для точки М: х 2 +у 2 =2рz - уравнение параболоида вращения

Уравнение прямой, проходящей через т.у А(ха; уа) и имеющей угловой коэффициент k, записывается в виде

у – уа=k (x – xa). (5)

Уравнение прямой, проходящей через две точки т. А (х 1 ; у 1) и т.В (х 2 ; у 2) , имеет вид

Если точки А и В определяют прямую, параллельную оси Ох (у 1 = у 2) или оси Оу (х 1 = х 2), то уравнение такой прямой записывается соответственно в виде:

у = у 1 или х = х 1 (7)

Нормальное уравнение прямой

Пусть дана прямая С, проходящая через данную точку Мо(Хо; Уо) и перпендикулярная вектору (А;В). Любой вектор , перпендикулярный данной прямой , называется ее нормальным вектором. Выберем на прямой произвольную т. М(х;у). Тогда , а значит их скалярное произведение . Это равенство можно записать в координатах

А(х-х о)+В(у-у о)=0 (8)

Уравнение (8) называется нормальным уравнением прямой .

Параметрическое и каноническое уравнения прямой

Пусть прямая l задана начальной точкой М 0 (х 0 ; у 0) и направляющим вектором (а 1 ;а 2 ),. Пусть т. М(х; у) – любая точка, лежащая на прямой l . Тогда вектор коллинеарен вектору . Следовательно, = . Записывая это уравнение в координатах, получаем параметрическое уравнение прямой

Исключим параметр t из уравнения (9). Это возможно, так как вектор , и потому хотя бы одна из его координат отлична от нуля.

Пусть и , тогда , и, следовательно,

Уравнение (10) называется каноническим уравнением прямой с направляющим вектором

=(а 1 ; а 2). Если а 1 =0 и , то уравнения (9) примут вид

Этими уравнениями задается прямая, параллельная оси, Оу и проходящая через точку

М 0 (х 0 ; у 0).

х=х 0 (11)

Если , , то уравнения (9) примут вид

Этими уравнениями задается прямая, параллельная оси Ох и проходящая через точку

М 0 (х 0 ; у 0). Каноническое уравнение такой прямой имеет вид

у=у 0 (12)

Угол между прямыми. Условие параллельности и перпендикулярности двух

Прямых

Пусть даны две прямые, заданные общими уравнениями:

и

Тогда угол φ между ними определяется по формуле:

(13)

Условие параллельности 2-х прямых: (14)

Условие перпендикулярности 2-х прямых: (15)

Условие параллельности в этом случае имеет вид: (17)

Условие перпендикулярности прямых: (18)

Если две прямые заданы каноническими уравнениями:

и

то угол φ между этими прямыми определяется по формуле:

(19)

Условие параллельности прямых: (20)

Условие перпендикулярности прямых: (21)



Расстояние от точки до прямой

Расстояние d от точки М(х 1 ; у 1) до прямой Ax+By+C=0 вычисляется по формуле

(22)

Пример по выполнению практической работы

Пример 1. Построить прямую 3х– 2у +6=0.

Решение:Для построения прямой достаточно знать какие-либо две её точки, например, точки её пересечения с осями координат. Точку А пересечения прямой с осью Ох можно получить, если в уравнении прямой принять у=0.Тогда имеем 3х +6=0, т.е. х =-2. Таким образом, А (–2;0).

Тогда В пересечения прямой с осью Оу имеет абсциссу х =0; следовательно, ордината точки В находится из уравнения –2у+ 6=0, т.е. у=3. Таким образом, В (0;3).

Пример 2. Составить уравнение прямой, которая отсекает на отрицательной полуплоскости Оу отрезок, равный 2 единицам, и образует с осью Ох угол φ =30˚.

Решение: Прямая пересекает ось Оу в точке В (0;–2) и имеет угловой коэффициент k =tg φ= = . Полагая в уравнении (2) k = и b = –2, получим искомое уравнение

Или .

Пример 3. А (–1; 2) и

В (0;–3). (указание : угловой коэффициент прямой находится по формуле (3))

Решение: .Отсюда имеем . Подставив в это уравнение координаты т.В, получим: , т.е. начальная ордината b = –3 . Тогда получим уравнение .

Пример 4. Общее уравнение прямой 2х – 3у – 6 = 0 привести к уравнению в отрезках.

Решение: запишем данное уравнение в виде 2х – 3у =6 и разделим обе его части на свободный член: . Это и есть уравнение данной прямой в отрезках.

Пример 5. Через точку А (1;2) провести прямую, отсекающую на положительных полуосях координат равные отрезки.

Решение: Пусть уравнение искомой прямой имеет вид По условию а =b . Следовательно, уравнение принимает вид х + у = а . Так как точка А (1; 2) принадлежит этой прямой, значит ее координаты удовлетворяют уравнению х + у = а ; т.е. 1 + 2 = а , откуда а = 3. Итак, искомое уравнение записывается следующим образом: х + у = 3, или х + у – 3 = 0.

Пример 6. Для прямой написать уравнение в отрезках. Вычислить площадь треугольника, образованного этой прямой и осями координат.



Решение: Преобразуем данное уравнение следующим образом: , или .

В результате получим уравнение , которое и является уравнением данной прямой в отрезках. Треугольник, образованный данной прямой и осями координат, является прямоугольным треугольником с катетами, равными 4 и 3, поэтому его площадь равна S= (кв. ед.)

Пример 7. Составить уравнение прямой, проходящий через точку (–2; 5) и образующей с осью Ох угол 45º.

Решение: Угловой коэффициент искомой прямой k = tg 45º = 1. Поэтому, воспользовавшись уравнением (5), получаем у – 5 = x – (–2), или х – у + 7 = 0.

Пример 8. Составить уравнение прямой, проходящей через точки А (–3; 5)и В(7; –2).

Решение: Воспользуемся уравнением (6):

, или , откуда 7х + 10у – 29 = 0.

Пример 9. Проверить, лежат ли точки А (5; 2), В (3; 1) и С (–1; –1) на одной прямой.

Решение: Составим уравнение прямой, проходящей через точки А и С :

, или

Подставляя в это уравнение координаты точки В (хВ = 3 и у В = 1), получим (3–5) / (–6)= = (1–2) / (–3), т.е. получаем верное равенство. Т. о., координаты точки В удовлетворяют уравнению прямой (АС ), т.е. .

Пример 10: Составить уравнение прямой, проходящую через т. А(2;-3).

Перпендикулярную =(-1;5)

Решение: Пользуясь формулой (8), находим уравнение данной прямой -1(х-2)+5(у+3)=0,

или окончательно, х – 5 у - 17=0.

Пример 11 : Даны точки М 1 (2;-1) и М 2 (4; 5). Написать уравнение прямой, проходящей через точку М 1 перпендикулярно вектору Решение: Нормальный вектор искомой прямой имеет координаты (2;6), следовательно по формуле (8) получим уравнение 2(х-2)+6(у+1)=0 или х+3у +1=0.

Пример 12 : и .

Решение: ; .

Пример 13:

Решение: а) ;

Пример 14: Вычислить угол между прямыми

Решение:

Пример 15: Выяснить взаимное расположение прямых:

Решение:

Пример 16: найти угол между прямыми и .

Решение: .

Пример 17: выяснить взаимное расположение прямых:

Решение:а) - прямые параллельны;

б) - значит, прямые перпендикулярны.

Пример 18: Вычислить расстояние от точки М(6; 8) до прямой

Решение: по формуле (22) получим: .

Задания для практического занятия:

Вариант 1

1. Привести общее уравнение прямой 2x+3y-6=0 к уравнению в отрезках и вычислить площадь треугольника, отсекаемого этой прямой от соответствующего координатного угла;

2. В ∆ABC вершины имеют координаты точки А (-3;4), точки В (-4;-3), точки С (8;1). Составить уравнения стороны (AB), высоты (ВК) и медианы (CМ);

3. Вычислить угловой коэффициент прямой, проходящей через точку М 0 (-2;4) и параллельной вектору (6;-1);

4. Вычислить угол между прямыми

4. Вычислить угол между прямыми:

а) 2x - 3y + 7 = 0 и 3x - y + 5 = 0 ; б) и y = 2x – 4;

5.Определить взаимное расположение 2-х прямых и ;

, если известны координаты концов отрезка т.А(18;8) и т.В(-2; -6).

Вариант 3

1. Привести общее уравнение прямой 4x-5y+20=0 к уравнению в отрезках и вычислить площадь треугольника, отсекаемого этой прямой от соответствующего координатного угла;

2. В ∆ABC вершины имеют координаты точки А (3;-2), точки В (7;3), точки

С (0;8). Составить уравнения стороны (AB), высоты (ВК) и медианы (CМ);

3. Вычислить угловой коэффициент прямой, проходящей через точку M 0 (-1;-2) и

параллельной вектору (3;-5);

4. Вычислить угол между прямыми

а) 3x + y - 7 = 0 и x - y + 4 = 0; б) и ;

5. Определить взаимное расположение 2-х прямых и y = 5x + 3;

6. Вычислить расстояние от середины отрезка АВ до прямой , если известны координаты концов отрезка т.А(4;-3) и т.В(-6; 5).

Вариант 4

1. Привести общее уравнение прямой 12x-5y+60=0 к уравнению в отрезках и вычислить длину отрезка, который отсекается от этой прямой соответствующим координатным углом;

2. В ∆ABC вершины имеют координаты точки А (0;-2), точки В (3;6), точки С (1;-4). Составить уравнения стороны (AB), высоты (ВК) и медианы (CМ);

3. Вычислить угловой коэффициент прямой, проходящей через точку M 0 (4;4) и параллельной вектору (-2;7);

4.Вычислить угол между прямыми

а) x +4 y + 8 = 0 и 7x - 3y + 5 = 0; б) и ;

5. Определить взаимное расположение 2-х прямых и ;

6. Вычислить расстояние от середины отрезка АВ до прямой , если известны координаты концов отрезка т.А(-4; 8) и т.В(0; 4).

Контрольные вопросы

1. Назовите уравнения прямой на плоскости, когда известны точка, через которую она проходит и ее направляющий вектор;

2. Какой вид имеет нормальное, общее уравнения прямой на плоскости;

3. Назовите уравнение прямой, проходящей через две точки, уравнение прямой в отрезках, уравнение прямой с угловым коэффициентом;

4. Перечислите формулы для вычисления угла между прямыми, заданными уравнениями с угловым коэффициентом. Сформулируйте условия параллельности и перпендикулярности двух прямых.

5. Как найти расстояние от точки до прямой?

Пусть даны две точки М (Х 1 ,У 1) и N (Х 2, y 2). Найдем уравнение прямой, проходящей через эти точки.

Так как эта прямая проходит через точку М , то согласно формуле (1.13) ее уравнение имеет вид

У Y 1 = K (X – x 1),

Где K – неизвестный угловой коэффициент.

Значение этого коэффициента определим из того условия, что искомая прямая проходит через точку N , а значит, ее координаты удовлетворяют уравнению (1.13)

Y 2 – Y 1 = K (X 2 – X 1),

Отсюда можно найти угловой коэффициент этой прямой:

,

Или после преобразования

(1.14)

Формула (1.14) определяет Уравнение прямой, проходящей через две точки М (X 1, Y 1) и N (X 2, Y 2).

В частном случае, когда точки M (A , 0), N (0, B ), А ¹ 0, B ¹ 0, лежат на осях координат, уравнение (1.14) примет более простой вид

Уравнение (1.15) называется Уравнением прямой в отрезках , здесь А и B обозначают отрезки, отсекаемые прямой на осях (рисунок 1.6).

Рисунок 1.6

Пример 1.10. Составить уравнение прямой, проходящей через точки М (1, 2) и B (3, –1).

. Согласно (1.14) уравнение искомой прямой имеет вид

2(Y – 2) = -3(X – 1).

Перенося все члены в левую часть, окончательно получаем искомое уравнение

3X + 2Y – 7 = 0.

Пример 1.11. Составить уравнение прямой, проходящей через точку М (2, 1) и точку пересечения прямых X + Y – 1 = 0, Х – у + 2 = 0.

. Координаты точки пересечения прямых найдем, решив совместно данные уравнения

Если сложить почленно эти уравнения, получим 2X + 1 = 0, откуда . Подставив найденное значение в любое уравнение, найдем значение ординаты У :

Теперь напишем уравнение прямой, проходящей через точки (2, 1) и :

или .

Отсюда или –5(Y – 1) = X – 2.

Окончательно получаем уравнение искомой прямой в виде Х + 5Y – 7 = 0.

Пример 1.12. Найти уравнение прямой, проходящей через точки M (2,1) и N (2,3).

Используя формулу (1.14), получим уравнение

Оно не имеет смысла, так как второй знаменатель равен нулю. Из условия задачи видно, что абсциссы обеих точек имеют одно и то же значение. Значит, искомая прямая параллельна оси ОY и ее уравнение имеет вид: x = 2.

Замечание . Если при записи уравнения прямой по формуле (1.14) один из знаменателей окажется равным нулю, то искомое уравнение можно получить, приравняв к нулю соответствующий числитель.

Рассмотрим другие способы задания прямой на плоскости.

1. Пусть ненулевой вектор перпендикулярен данной прямой L , а точка M 0(X 0, Y 0) лежит на этой прямой (рисунок 1.7).

Рисунок 1.7

Обозначим М (X , Y ) произвольную точку на прямой L . Векторы и Ортогональны. Используя условия ортогональности этих векторов, получим или А (X X 0) + B (Y Y 0) = 0.

Мы получили уравнение прямой, проходящей через точку M 0 перпендикулярно вектору . Этот вектор называется Вектором нормали к прямой L . Полученное уравнение можно переписать в виде

Ах + Ву + С = 0, где С = –(А X 0 + By 0), (1.16),

Где А и В – координаты вектора нормали.

Получим общее уравнение прямой в параметрическом виде.

2. Прямую на плоскости можно задать так: пусть ненулевой вектор параллелен данной прямой L и точка M 0(X 0, Y 0) лежит на этой прямой. Вновь возьмем произвольную точку М (Х , y) на прямой (рисунок 1.8).

Рисунок 1.8

Векторы и коллинеарны.

Запишем условие коллинеарности этих векторов: , где T – произвольное число, называемое параметром. Распишем это равенство в координатах:

Эти уравнения называются Параметрическими уравнениями Прямой . Исключим из этих уравнений параметр T :

Эти уравнения иначе можно записать в виде

. (1.18)

Полученное уравнение называют Каноническим уравнением прямой . Вектор называют Направляющим вектором прямой .

Замечание . Легко видеть, что если – вектор нормали к прямой L , то ее направляющим вектором может быть вектор , так как , т. е. .

Пример 1.13. Написать уравнение прямой, проходящей через точку M 0(1, 1) параллельно прямой 3Х + 2У – 8 = 0.

Решение . Вектор является вектором нормали к заданной и искомой прямым. Воспользуемся уравнением прямой, проходящей через точку M 0 с заданным вектором нормали 3(Х –1) + 2(У – 1) = 0 или 3Х + – 5 = 0. Получили уравнение искомой прямой.