Как защитить себя и свой дом от электромагнитного излучения

  • 13.06.2019

Хорев Анатолий Анатольевич,
доктор технических наук, профессор
Национальный исследовательский университет «МИЗТ», г.Москва

Способы защиты объектов информатизации от утечки информации по техническим каналам: экранирование

В статье рассмотрены вопросы, связанные с защитой объектов информатизации от утечки информации по техническим каналам путем использования средств электромагнитного экранирования.

1. Экранирование как способ уменьшения уровня побочных электромагнитных излучений

Одним из наиболее опасных технических каналов утечки информации на объектах информатизации является канал утечки информации, возникающий вследствие побочных электромагнитных излучений (ПЭМИ) технических средств обработки информации (ТСОИ). Такой канал утечки информации часто называют электромагнитным .

В области защиты информации под побочным электромагнитным излучением обычно понимается нежелательное радиоизлучение, возникающие в результате нелинейных процессов в электронной аппаратуре.

В зарубежной литературе вместо термина ПЭМИ используются термины compromising emanations» (компрометирующие излучения) или TEMPEST (сокращение от «transient electromagnetic pulse emanation standard» - стандарт на электромагнитные импульсные излучения, вызванные переходными процессами в электронной аппаратуре).

Функционирование любого технического средства обработки информации связано с протеканием по его токоведущим элементам электрических токов и образованием разности потенциалов между различными точками его электрической схемы, которые порождают магнитные и электрические поля .

Узлы и элементы электронной аппаратуры, в которых имеют место большие напряжения и протекают малые токи, создают в ближней зоне электромагнитные поля с преобладанием электрической составляющей. Преимущественное влияние электрических полей на элементы электронной аппаратуры наблюдается и в тех случаях, когда эти элементы малочувствительны к магнитной составляющей электромагнитного поля.

Узлы и элементы электронной аппаратуры, в которых протекают большие токи и имеют место малые перепады напряжения, создают в ближней зоне электромагнитные поля с преобладанием магнитной составляющей. Преимущественное влияние магнитных полей на аппаратуру наблюдается также в случае, если рассматриваемое устройство малочувствительно к электрической составляющей поля или последняя много меньше магнитной за счёт свойств излучателя.

Побочные электромагнитные излучения возникают также при «протекании» информативных сигналов по соединительным линиям ТСОИ.

Эффективным методом снижения уровня ПЭМИ является экранирование их источников.

Для оценки эффективности экранирования электрической или магнитной составляющей электромагнитного поля вводят понятие коэффициента экранирования (ослабления)

A E =20lg(E o /E A); (1)

A H =20lg(H o /H A), (2)

А Е - коэффициент экранирования (ослабления) по электрической составляющей электромагнитного поля, дБ,
А н - коэффициент экранирования (ослабления) по магнитной составляющей электромагнитного поля, дБ,
Е 0 - напряжённость электрической составляющей электромагнитного поля в точке измерения в отсутствии экрана, В/м, Е А - напряжённость электрической составляющей электромагнитного поля в точке измерения при наличии экрана, В/м, Н 0 - напряжённость магнитной составляющей электромагнитного поля в точке измерения в отсутствии экрана,А/м,
Н А - напряжённость электрической составляющей электромагнитного поля в точке измерения при наличии экрана, А/м.

Различают следующие способы экранирования: электростатическое, магнитостатическое и электромагнитное .

Электростатическое и магнитостатическое экранирование основаны на замыкании экраном (обладающим в первом случае высокой электропроводностью, а во втором магнитопроводностью) соответственно электрического и магнитного полей.

Электростатическое экранирование по существу сводится к замыканию электростатического поля на поверхность металлического экрана и отводу электрических зарядов на землю (на корпус прибора). Заземление электростатического экрана является необходимым элементом при реализации электростатического экранирования.

Применение металлических экранов позволяет полностью устранить влияние электростатического поля. При использовании диэлектрических экранов, плотно прилегающих к экранируемому элементу, можно ослабить поле источника наводки в ε раз, где ε - относительная диэлектрическая проницаемость материала экрана .

Основной задачей экранирования электрических полей является снижение ёмкости связи между экранируемыми элементами конструкции. Следовательно, эффективность экранирования определяется в основном отношением ёмкостей связи между источником и рецептором наводки до и после установки заземлённого экрана. Поэтому любые действия, приводящие к снижению ёмкости связи, увеличивают эффективность экранирования.

Экранирующее действие металлического листа существенно зависит от качества соединения экрана с корпусом прибора и частей экрана друг с другом. Особенно важно не иметь соединительных проводов между частями экрана и корпусом.

В диапазонах метровых и более коротких длин волн соединительные проводники длиной в несколько сантиметров могут резко ухудшить эффективность экранирования. На ещё более коротких волнах дециметрового и сантиметрового диапазонов соединительные проводники и шины между экранами недопустимы. Для получения высокой эффективности экранирования электрического поля здесь необходимо применять непосредственное сплошное соединение отдельных частей экрана друг с другом .

Узкие щели и отверстия в металлическом экране, размеры которых малы по сравнению с длиной волны, практически не ухудшают экранирование электрического поля.

На частотах свыше 1 ГГц с увеличением частоты эффективность экранирования снижается.

Основные требования, которые предъявляются к электрическим экранам, можно сформулировать следующим образом :

  • конструкция экрана должна выбираться такой, чтобы силовые линии электрического поля замыкались на стенки экрана, не выходя за его пределы;
  • в области низких частот при глубине проникновения (δ) больше толщины(d), то есть при δ > d, эффективность электростатического экранирования практически определяется качеством электрического контакта металлического экрана с корпусом устройства и мало зависит от материала экрана и его толщины;
  • в области высоких частот при δ > d эффективность экрана, работающего в электромагнитном режиме, определяется его толщиной, проводимостью и магнитной проницаемостью.

Магнитостатическое экранирование используется при необходимости подавить наводки на низких частотах от 0 до 3 -10 кГц .

Основные требования, предъявляемые к магнитостатическим экранам, можно свести к следующим :

  • магнитная проницаемость μ α материала экрана должна быть возможно более высокой. Для изготовления экранов желательно применять магнитомягкие материалы с высокой магнитной проницаемостью (например, пермаллой);
  • увеличение толщины стенок экрана приводит к повышению эффективности экранирования, однако при этом следует принимать во внимание возможные конструктивные ограничения по массе и габаритам экрана;
  • стыки, разрезы и швы в экране должны размещаться параллельно линиям магнитной индукции магнитного поля, их число должно быть минимальным;
  • заземление экрана не влияет на эффективность магнитостатического экранирования.

Эффективность магнитостатического экранирования повышается при применении многослойных экранов.

Экранирование высокочастотного магнитного поля основано на использовании магнитной индукции, создающей в экране переменные индукционные вихревые токи (токи Фуко). Магнитное поле этих токов внутри экрана будет направлено навстречу возбуждающему полю, а за его пределами - в ту же сторону, что и возбуждающее поле. Результирующее поле оказывается ослабленным внутри экрана и усиленным вне его. Вихревые токи в экране распределяются неравномерно по его сечению (толщине). Это называется явлением поверхностного эффекта, сущность которого заключается в том, что переменное магнитное поле ослабевает по мере проникновения в глубь металла, так как внутренние слои экранируются вихревыми токами, циркулирующими в поверхностных слоях .

Благодаря поверхностному эффекту плотность вихревых токов и напряжённость переменного магнитного поля по мере углубления в металл падают по экспоненциальному закону.

Эффективность магнитного экранирования зависит от частоты и электрических свойств материала экрана. Чем ниже частота, тем слабее действует экран, тем большей толщины приходится его делать для достижения одного и того же экранирующего эффекта. Для высоких частот, начиная с диапазона средних волн, экран из любого металла толщиной 0,5-1,5 мм действует весьма эффективно. При выборе толщины и материала экрана следует учитывать механическую прочность, жёсткость, стойкость против коррозии, удобство стыковки отдельных деталей и осуществления между ними переходных контактов с малым сопротивлением, удобство пайки, сварки и пр. .

Для частот выше 10 МГц медная и, тем более, серебряная плёнка толщиной более 0,1 мм даёт значительный экранирующий эффект. Поэтому на частотах выше 10 МГц вполне допустимо применение экранов из фольги-рованного гетинакса или другого изоляционного материала с нанесённым на него медным или серебряным покрытием .

При экранировании магнитного поля заземление экрана не изменяет величины возбуждаемых в экране токов и, следовательно, на эффективность магнитного экранирования не влияет.

На высоких частотах применяется исключительно электромагнитное экранирование. Действие электромагнитного экрана основано на том, что высокочастотное электромагнитное поле ослабляется им же созданным (благодаря образующимся в толще экрана вихревым токам) полем обратного направления.

2. Экранирующие материалы

Выбор материала экрана проводится исходя из обеспечения требуемой эффективностиэкранирования в заданном диапазоне частот при определённых ограничениях. Эти ограничения связаны с массогабаритными характеристиками экрана, его влиянием на экранируемый объект, с механической прочностью и устойчивостью экрана против коррозии, с технологичностью его конструкции и т.д.

Таблица 1. Коэффициенты экранирования электромагнитного поля некоторых материалов

Наименование материала

Толщина, мм

Диапазон частот, МГц

Коэффициент экранирования, дБ

Листовая сталь СТ-3, ГОСТ 19903-74

Фольга алюминиевая, ГОСТ 618-73

Фольга медная, ГОСТ 5638-75

Сетка стальная тканая, ГОСТ 5336-73

Радиозащитное стекло с одно- или с двухсторонним
полупроводниковым покрытием, ТУ 21-54-41-73

Ткань хлопчатобумажная с наноструктурным
ферромагнитным микропроводом

Ткань трикотажная (полиамид + проволока), ТУ 6-06-С202-90

Ткань металлизированная «Восход»

Толщина напыления 4-6 мкм

4. Николаенко Ю.С. Противодействие радиотехнической разведке // Системы безопасности, связи и телекоммуникаций. - 1995. - № 6. - С. 12 - 15.

5. Рабочая станция ЕС1855.М.02. [Электронный ресурс]. - Режим доступа: http://www.niievm.by/products/ec1855_m_02.htm .

6. СанПиН 2.2.4/2.1.8.055-96. Санитарно-эпидемиологические правила и нормативы. «Электромагнитные излучения радиочастотного диапазона (ЭМИ РЧ)». [Электронный ресурс]. - Режим доступа: http://www.vrednost.ru/224218055.php .

7. Технические методы и средства защиты информации / Ю.Н. Максимов, В.Г. Сонников, В.Г. Петров и др. - СПб.: «Издательство Полигон», 2000. - 320 с.

8. Хорев А.А. Техническая защита информации: учеб. пособие для студентов вузов. В 3 т. Т. 1. Технические каналы утечки информации. - М.: НПЦ «Аналитика», 2008. - 436 с.

9. Экранированные сооружения. [Электронный ресурс]. - Режим доступа: http://www .elfilter. ru/levadnyi/kamers.htm.

10. Экранирующие материалы для защиты от электромагнитных излучений и решения проблем электромагнитной совместимости. [Электронный ресурс]. - Режим доступа: http://ckbrm.ru/index.php?products=64

11. Электромагнитная совместимость радиоэлектронных средств и непреднамеренные помехи. В 3-х вып. Вып 2. Внутрисистемные помехи и методы их уменьшения: Сокращ. пер. с англ./Под ред. А.И.Саприга. - М.: Сов. Радио, 1978. - 272 с.

Под электромагнитным экранированием понимается комплекс мер, ограничивающих область распространения электромагнитных волн (сигналов). Это необходимо для:

  • обеспечения защиты людей от недопустимого для человеческого организма уровня электромагнитного воздействия;
  • исключения негативного взаимовлияния (создания индустриальных радиопомех) различных передающих и приемных радиоэлектронных устройств;
  • защиты информации в помещениях и технических каналах от несанкционированного съема;
  • обеспечения благоприятной электромагнитной обстановки вокруг работающих электроустановок и сверхвысокочастотных устройств.

Электромагнитный экран

Электромагнитный экран - это металлическая оболочка, которая используется для исключения влияния экранированного оборудования на другие приборы и людей. Путем окружения такой оболочкой источника переменного электромагнитного поля можно исключить влияние этого источника на устройства, расположенные вне оболочки.

Чем выше частота и толщина стенок экрана, тем экранирующее действие выше.

Эффективное экранирующее действие достигается при толщине стенок , которая равна длине волны в веществе экрана. Объясняется это тем, что в момент проникновения волны в проводящее полупространство происходит е2p-кратное ослабление поля. Другими словами, на таком расстоянии происходит фактически полное затухание волны. На практике считается, что затухание происходит уже на расстоянии, в два-три раза меньшем по сравнению с длиной.

Что касается частоты , то при ее увеличении уменьшается глубина проникновения (длина волны) электромагнитного поля в проводнике.

Для экранирования высокочастотных полей (радиочастоты) не нужно использовать экраны из ферромагнитных материалов, которые являются нежелательными из-за того, что их магнитная проницаемость зависит от напряженности магнитного поля и явления гистерезиса. Как правило, в данном случае для экранирования применяются хорошо проводящие материалы, например, медь или алюминий.

В случае промышленной частоты (50 Гц) медный экран уже малоэффективен, кроме случая, когда толщина стенок экрана является значительной. Объясняется это длиной волны на этой частоте в меди, составляющей порядка 6 см. И вот тут уже целесообразно для экранирования выбирать ферромагнитный материал, который благодаря своей высокой магнитной проницаемости обеспечит значительно более быстрое, нежели медь, затухание электромагнитной волны.

Бывает полное и частичное электромагнитное экранирование.

Экран может состоять из сплошного однородного металла или же представлять собой многослойную конструкцию. Многослойным экран делают для избежания эффекта насыщения. Желательно при этом, чтобы по отношению к экранируемому излучению каждый последующий слой имел начальное значение магнитной проницаемости большее, чем предыдущий.

При электромагнитном экранировании происходит потеря части энергии в экране. В связи с этим материал и размеры экрана при его разработке выбираются на основании допустимых потерь, вносимых экраном в экранируемую цепь.

Экранирование помещений

Под экранированием помещений понимают локализацию электромагнитного поля в какой-то отдельной комнате или части помещения для более или менее полного освобождения остальной среды от этого поля. Благодаря этому обеспечивается защита как людей от воздействия электромагнитных полей, так и радиоэлектронных приборов от внешних полей. Кроме того, локализуются собственные излучения этих приборов, это препятствует появлению их в окружающем пространстве.

Посредством экранирования помещений, где происходят прием, передача и обработка конфиденциальных данных, возможно снижение уровней электромагнитных излучений до заданных величин, что, в свою очередь, делает почти невозможным несанкционированных съем данной информации.

Для экранирования электромагнитных полей применяются спе-циальные конструкции и разнообразные материалы. Специальные конструкции включают экранированные сооружения , помещения и камеры. Они могут быть стационарными, сборно-разборными и мобильными. Выполняются из стальных листов толщиной 2-3 мм и обеспечивают затухание электромагнитного поля 60-120 дБ. Для обеспечения нормальной работы они оборудуются защищенны-ми дверьми, воротами, проемами с устройствами сигнализации о плотном закрытии, разнообразными помехоподавляющими филь-трами, средствами вентиляции и кондиционирования, пожарной сигнализации, пожаротушения и дымоулавливания.

В качестве материалов для эффективного экранирования ис-пользуются металлические листы и сетки. Стальные листы тол-щиной 2-3 мм, сваренные герметичным швом, обеспечивают на-ибольший экранирующий эффект (до 100 и более дБ). Толщина стального листа выбирается исходя из прочности конструкции и возможности создания сплошного шва. При сварке переменным током толщина сплошного шва обеспечивается при толщине лис-тов 1,5-2 мм, на постоянном токе — около 1 мм, газовая сварка позволяет создать сплошной шов при толщине свариваемых лис-тов до 0,8 мм.

Однако металлические листы имеют высокую цену, а изготов-ление из них экранов и их эксплуатация требуют больших затрат. Коррозия и появляющаяся во время монтажа напряженность сва-рочных швов снижают надежность и долговечность экранов, а необходимость их периодической проверки и устранения дефектов повышают эксплуатационные расходы.

Более дешевые и удобные, но менее эффективные экраны из металлической сетки. Применяют для экранирования сетки из луженой стальной и латунной проволоки с ячейками размерами от долей (0,25) мм до единиц (3-6) мм. Экранирующие свойства сет-ки в основном определяются отражением электромагнитной волны от ее поверхности. Эффективность экрана из луженой низкоугле-родистой стальной сетки с ячейками размером 2,5-3 мм составляет на частотах Гц 55-60 дБ, а из двойной сетки с расстоянием между слоями 100 мм достигает эффективности экранов из стальных лис-тов — около 90 дБ. По соотношению радиуса г проволоки сетки и шага сетки s различают густые и редкие сетки. К густым относят-ся сетки, у которых s/r < 8, у редких — s/r > 8. Эффективность эк-ранирования редкой сетки определяется по формуле:

Для густых сеток более точный результат получается при за-мене величины ln(2nr/s) в этой формуле на 2nr/s.

Наряду с рассмотренными традиционными средствами для электромагнитного экранирования в последнее время все шире применяются фольговые и металлизированные материалы, то-копроводящие краски и клеи, радиопоглощающие строитель-ные материалы.


В качестве фольговых материалов используются фольга тол-щиной 0,01-0,08 мм, наклеиваемая на экранируемую поверхность, и фольга на непроводящей подложке, например на фольгоизоле. Фольга изготовляется из алюминия, латуни, цинка.

Металлизация различных материалов применяется для элек-тромагнитного экранирования благодаря универсальности мето-да распыления расплавленного металла струей сжатого воздуха. Движущиеся с большой скоростью распыленные частицы метал-ла ударяются о поверхность подложки, деформируются и сопри-касаются друг с другом. При этом обеспечивается прочная связь с подложкой и непрерывная проводимость покрытия. Этот метод позволяет нанести металлический слой практически на любую поверхность: плотную бумагу, ткань, дерево, стекло, пластмассу, бе-тон и др. Толщина наносимого слоя зависит от физико-химических свойств подложки. Для плотной бумаги слой металла характеризу-ется величиной не более 0,28 кг/м 2 , для ткани — 0,3 кг/м 2 , для жес-ткой подложки толщина не ограничивается. В качестве металла покрытия чаще используется цинк, реже алюминий. Алюминиевое покрытие имеет более высокий (примерно не 20 дБ) коэффициент экранирования, но оно менее технологично.

Эффективность экранирования металлизированной цинком поверхности оценивается по эмпирической формуле:

S MeT = 97 + 51gd 0 -201gf,

где d 0 — количество распыленного металла, кг/м 2 , f— частота поля, Мгц.

Из металлизированных материалов наиболее широко приме-няются металлизированные ткани и пленки (стекла). Ткани ме-таллизируются как путем вплетения в нее металлизированных или металлических нитей пряжи, так и путем нанесения на поверх-ность ткани слоя металла. При этом у тканей сохраняются не толь-ко ее первоначальные свойства (гибкость, воздухопроницаемость, легкость) и внешний вид, но появляются дополнительные стой-кость к агрессивным средам и противопожарная устойчивость. Ткань можно сшивать, склеивать и даже паять. Эффективность эк-ранирования металлизированных тканей в высокочастотном диа-пазоне (сотни МГц) достигает 50-70 дБ. Их применяют для экра-нирования стен и оконных проемов (в виде штор), корпусов про-дукции, антенных отражателей, чехлов на объекты радиолокаци-онного наблюдения.

Электрические и оптические свойства стекол с токопроводящим покрытием зависят от состава токопроводящей пленки, ее тол-щины, методов ее нанесения и свойств стекла. Допустимые сни-жение прозрачности пленки не более 20% и электропроводность обеспечиваются при толщине пленки 5-3000 нм. Наибольшее рас-пространение получили пленки из окиси олова.

Стекла с токопроводящими покрытиями имеют поверхностное электрическое сопротивление порядка 5-10 Ом при незначительном (не более 20%) ухудшении прозрачности. Токопроводящие пленки, наклеиваемые на стекла окон, позволяют повысить экра-нирующий эффект окон без ухудшения их внешнего вида и про-зрачности на 18-22 дБ на частотах в сотни МГц и на 35-40 дБ на частотах единицы ГГц. В зависимости от вида напыляемого на пленку металла они имеют золотистый (медное напыление) или се-ребристый (алюминиевое напыление) цвет.

Токопроводящие краски создаются путем ввода в краски то-копроводящих материалов: коллоидного серебра, графита, сажи, оксидов металла, порошковой меди и алюминия и других метал-лов. Наилучшие результаты обеспечивает краска, у которой в ка-честве токопроводящего пигмента применяется ацетиленовая сажа и графит. Например, краска, представляющая композицию лака 9-32 и 300% карандашного графита, имеет поверхностное сопро-тивление 7-7,6 Ома при толщине покрытия 0,15-0,17 мм и сопро-тивление 5-6 Ом при толщине покрытия 0,2-0,21 мм.

Тркопроводящие краски в силу худшей электропроводности и малой толщины обеспечивают меньшую по сравнению с металли-зированными тканями экранирующую эффективность, но не ме-нее 30 дБ в широком диапазоне частот. Но из-за простоты нанесе-ния на поверхность эмали широко применяются для:

Экранирования ограждений (стен, потолков, дверей);

Защиты контактных поверхностей от окисления;

Окрашивания внутренней поверхности корпусов аппаратуры;

Проведения профилактических и ремонтных работ, в том числе для заделки щелей, отверстий, выводов труб из стен, для улуч-шения контакта между металлизированными пленками и ме-таллическими экранами стен.

Электропроводные клеи применяются вместо пайки и болто-вых соединений элементов электромагнитных экранов, а также для заполнения щелей и малых отверстий в них. Основу электропровод-ного клея составляет смесь эпоксидной смолы и тонкодисперсных порошков железа, кобальта или никеля. Про прочности до 500 кг/ см 2 такой клей имеет низкую удельную электропроводность.

Для повышения экранирующей способности потолков, стен, полов помещений применяются ферритодиэлектрические облицовочные материалы , поглощающие электромагнитные поля. Этот поглотитель представляет собой панель из склеенных метал-лической подложки, ферритового и диэлектрического материалов. Ферритодиэлектрический поглотитель электромагнитных волн экологически чист, имеет стабильные радиотехнические характе-ристики в широком диапазоне частот, обеспечивает коэффициент отражения -12-(-40) дБ в диапазоне частот 0,03-40 ГГц, устойчив к воздействию огня.

Путем добавки в бетон строительных конструкций токопроводящих материалов удается также повысить экранирующие свойс-тва стен и перекрытий зданий.

Металлизированные ткани и пленки, фольговый материал, токопроводящие эмали эффективно экранируют слабые побочные электромагнитные излучения и наводки, но их экранирующая спо-собность недостаточна для энергетической скрытности более мощ-ных сигналов, например излучений передатчиков закладных уст-ройств, не говоря уже об излучениях настраиваемых или испытуе-мых в исследовательских лабораториях создаваемых излучающих радиоэлектронных средств.

Для гарантированного ослабления опасных сигналов при жес-тких требованиях к уровню безопасности информации источни-ки излучений размещают в экранированных помещениях (экран-ных комнатах), ограждения которых покрыты стальными листа-ми или металлическими сетками. Размеры экранированного поме-щения выбирают из его назначения и стоимости экранирования. Существуют экранированные вычислительные центры площадью в многие десятки м 2 , но обычно экранные комнаты для проведе-ния измерений радиоизлучающих блоков и антенн имеют неболь-шую площадь в 6-8 м 2 при высоте 2,5-3 м. Металлические листы или полотнища сетки, покрывающие стены, потолок и пол, долж-ны быть прочно, с малым электрическим сопротивлением, соеди-нены между собой по периметру. Для сплошных экранов это со-единение обеспечивается сваркой или пайкой, для сетчатых экра-нов должен быть обеспечен точечной сваркой или пайкой хороший электрический контакт между полотнищами не реже чем через 10-15 мм.

Двери должны быть также экранированы. При их закрывании необходимо обеспечить надежный электрический контакт с метал-лическими листами или сеткой стен по всему периметру дверей. Для этого применяют пружинную гребенку из фосфористой брон-зы, которую укрепляют по внутреннему периметру дверной рамы. При наличии в экранной комнате окон последние должны быть затянуты одним или двумя слоями сетки, расстояние между сло-ями двойной сетки не менее 50 см. Слои сетки должны иметь хо-роший электрический контакт с экраном стен по всему периметру оконной рамы. Экран, изготовленный из луженой низкоуглеродис-той стальной сетки с ячейкой размером 2,5-3 мм, уменьшает уро-вень излучений на 55-60 дБ, а из такой же двойной (с расстоянием между наружной и внутренней сетками 100 мм) приблизительно на 90 дБ. Сетки для обеспечения возможности мытья стекол удоб-нее делать съемными, а металлическое обрамление съемной час-ти должно иметь пружинящие контакты в виде гребенки из фос-фористой бронзы.

При проведении работ по тщательному экранированию подоб-ных помещений необходимо одновременно обеспечить нормаль-ные условия для работающего в нем человека, прежде всего, вен-тиляцию воздуха и освещение. Это тем более важно, так как у че-ловека в экранной комнате может ухудшиться самочувствие из-за экранирования магнитного поля Земли.

Для эффективного электромагнитного экранирования венти-ляционные отверстия на частотах менее 1000 МГц закрывают со-товыми экранами с прямоугольными, круглыми, шестигранными ячейками. Для обеспечения эффективного электромагнитного эк-ранирования необходимо, чтобы размеры ячеек экрана не превы-шали 0,1 длины волны поля. Но на высоких частотах размеры яче-ек могут быть столь малыми, что ухудшится вентиляция через них воздуха. Поэтому на частотах выше 1000 МГц применяют специ-альные электромагнитные ловушки в виде конструкции из погло-щающих электромагнитные поля материалов, вставляемой в вен-тиляционные отверстия.

Величины затухания радиосигнала в экранированном помеще-ния в зависимости от конструкции экрана указаны в табл. 24.1.

Вопросы для самопроверки

1.Требования к средствам защиты информации от утечки через побочные электромагнитные излучения и наводки.

2.Типы средств для подавления опасных сигналов акустоэлектрических преобразователей.

3.Что представляют собой специальные конструкции для экрани-рования полей?

4.Какие материалы используются для экранирования электромаг-нитных полей?

5.Достоинства и недостатки пленок, красок и клея, применяемых для электромагнитного экранирования.

Электромагнитное экранирование – способ снижения интенсивности электромагнитных волн до заданного уровня с помощью специального материалов, оборудования и технологических решений. Снижение интенсивности поля необходимо для защиты людей или техники от влияния электромагнитного излучения либо для предотвращения нежелательной утечки информации, которая может переноситься электромагнитным излучением.

Экранирование обеспечивается созданием специальных экранов, от которых излучение может отражаться, в которых оно может поглощаться или рассеиваться, либо комбинацией этих способов. Экраны образуют замкнутые объемы, которые охватывают или объект защиты от излучения, либо объект, излучение от которого должно быть подавлено. Кроме того, необходимы специальные решения для ввода в электромагнитный экран или вывода наружу различных линий инженерных или информационных коммуникаций.

Экранирование от ЭМИ – защита людей, техники, информации

Во всех странах законодательно задается допустимый уровень излучения, которому может подвергаться человек без опасения за его здоровье. Применение экранов позволяет снизить потенциально опасные для здоровья уровни излучения до безопасных.

Под воздействием интенсивных полей наблюдаются сбои в работе электроники. Помехи, создаваемые мощными полями, могут вывести из строя интегральные микросхемы и полупроводниковые элементы.

Становится возможным несанкционированный доступ к конфиденциальной информации. Интенсивное излучение позволяет задействовать специальные дистанционные устройства, считывающие данные в процессе работы компьютера. Непроизвольным передатчиком секретной информации может стать любой электронный гаджет, например, смартфон.

Преграду электромагнитному полю создает экран с высокой магнитной или электрической проводимостью, оборудованный вокруг защищаемого пространства или полости. В требуемых случаях экранируют источник излучения, чтобы предотвратить его распространение.

Правильно оборудованный защитный экран позволяет:

  • ограничить негативное воздействие на электронные и радиотехнические устройства;
  • организовать безопасное рабочее место для обслуживающего персонала;
  • исключить несанкционированное проникновение к конфиденциальной информации.

Прежде чем использовать тот или иной метод защиты экранированием, необходимо обследование объекта специалистами для создания проекта.

В ряде случаев необходимо исследовать объект с помощью специального оборудования.

В процессе исследования анализируются частотные параметры ЭМИ, измеряется его уровень в разных точках. Поручив эту процедуру специалистам «НТЦ Фарадей», заказчик получает инструментально точные результаты и квалифицированные рекомендации по организации эффективного экранирования.

От чего зависит эффективность экранирования

Уровень экранирования определяется показателем коэффициента экранирования. Коэффициент экранирования – отношение величин интенсивности электромагнитного поля до экрана и за экраном.

На эффективность действия экрана в совокупности влияют несколько факторов:

  • частотный диапазон электромагнитных полей;
  • степень электропроводимости используемых материалов;
  • показатель магнитной проницаемости материалов;
  • габариты и расположение экрана.

Все эти факторы необходимо учитывать при разработке проекта экранирования для каждого конкретного объекта.

Зависимость экранирования от частотного диапазона

Экранирование полей высокочастотного диапазона основано на отражении и поглощении электромагнитной волны при переходе из одной среды в другую. Электромагнитная волна, взаимодействуя с экраном, частично отражается его поверхностью, частично поглощается материалом экрана. Эти процессы приводят к потере энергии, ослаблению и затуханию волны.

При экранировании низкочастотных полей (так называемые магнитные поля) используют свойства так называемых магнитомягких материалов.

Для экранирования высокочастотных полей основное требование – высокая электропроводность материала экрана и отсутствие отверстий, щелей, плохого контакта элементов экрана. Даже небольшое отверстие при короткой длине волны превращается в так называемую щелевую антенну, в итоге пропускающую излучение через экран.

Элементы и сырье для экранирования

В производстве защитных экранов используются разнообразные материалы. Средством экранирования могут служить листовая медь, алюминий, сталь или фольга, а также современные специализированные ткани и сетки. Чем выше удельная проводимость материала экрана, тем эффективнее экранирование. Конкретное значение защитных способностей экрана зависит от конфигурации и объема помещения, площади оконных и дверных проемов, материала стен.

Сырьем для изготовления экранирующих конструкций и приспособлений служат:

  • стальные и медные пластины — для сооружения корпусов, камер, внутренней облицовки помещений;
  • тонкая фольга из мягкомагнитных сплавов – защита аппаратуры;
  • металлические ленты и оплетки – экранирование кабелей;
  • металлизированные шланги – защита кабельных жгутов;
  • металлические соты – для организации экранов с воздухопроницаемыми свойствами;
  • тонкая проволочная сетка – экранирование оконных проемов.

Надежное и качественное экранирование помещений и оборудования невозможно обеспечить без тщательного уплотнения оконных и дверных проемов, строительных стыков, всевозможных щелей и отверстий. В этих целях используются специальные материалы, которые в достаточной степени обладают такими качествами, как:

  • проводимость;
  • формуемость;
  • устойчивость к ЭМП разной интенсивности;
  • низкий уровень контактного сопротивления.

Данным требованиям соответствуют уплотнители, выполненные на основе силиконового каучука. Используются в экранах виде трубок, пластинок, кольцевидных шнуров.

Электромагнитная безопасность от «НТЦ Фарадей»

Создание условий для электромагнитной безопасности помещений, особенно в отношении защиты информации необходимо предусматривать на стадии проектных разработок. , используемые компанией «НТЦ Фарадей», позволяют выполнять качественное электромагнитное экранирование, как на стадии возведения объекта, так и уже существующих помещений, которые изначально не предназначались под специальное использование.

Специалисты компании разработают и реализуют уникальный проект экранов любой сложности по заказу и техзаданию заказчика:

  • цельносварные камеры и сборно-разборные камеры с требуемыми заказчику размерами;
  • экранирующие ворота и двери;
  • экраны-фильтры для оптоволокна;
  • специализированные стекла для отдельного наблюдения;
  • защитные материалы по линии ЭМС;
  • электрические фильтры (силовые и сигнальные);
  • вентиляционные фильтры.

Выполняется тестирование и постоянная техническая поддержка в процессе эксплуатации защитных систем электромагнитного экранирования.

С развитием приборостроения возникла необходимость создания экранирующих материалов и конструкций, которые защищают комнату, персонал и аппаратуру от электромагнитного излучения в разном диапазоне частот. Выбор материала зависит от сферы его применения, особенностей помещения и т.д.

Виды экранирующих материалов

На сегодняшний день разработаны следующие виды экранирующих материалов:

  • Сетки . Они изготавливаются из меди и используются для защиты от электромагнитных волн и предотвращения утечки информации. Экраны из тканой сетки не препятствуют поступлению света в помещение и обеспечивают хорошую вентиляцию. Они имеют малый вес, легко собираются и демонтируются, характеризуются высокой эффективностью и долговечностью. Единственный недостаток сетки – низкий показатель стойкости к механическим воздействиям. Выпускается два вида сетки – редкая и мелкая.
  • Пластины . Они представляют собой стальные листы толщиной до 3 мм и обеспечивают максимальную защиту от излучений. Несмотря на достаточно высокую стоимость изготовления и эксплуатации, экраны из пластин широко применяются для экранирования стен, дверей и ворот. Недостатками экранирующих пластин являются подверженность коррозии и напряженность сварочных швов, поэтому они менее надежны и долговечны, чем сетка, и требуют регулярной проверки и своевременного устранения дефектов.
  • Краски и грунтовки . В их состав входит тонкопроводной углерод (сажа, графит и т.п.), заменяющий металл, поэтому краски и грунтовки стоят на порядок дешевле. Они применяются в промышленных, медицинских, общественных, образовательных и жилых помещениях для защиты людей и приборов от излучений, и предотвращения возможности перехвата секретной информации. Среди преимуществ красок можно перечислить влагостойкость, воздухопроницаемость, универсальность, стойкость к химическим и механическим воздействиям, хороший уровень адгезии к разным поверхностям (гипсокартону, штукатурке, бетону), эстетичность.
  • Ткани. Есть два способа металлизации ткани – нанесение тонкого слоя металла на ее поверхность и вплетение металлизированных либо металлических нитей. Оба способа позволяют сохранить первоначальные свойства материала – гибкость, легкость, воздухопроницаемость. При этом ткань не теряет эстетичный внешний вид и приобретает дополнительные характеристики – стойкость к воздействию огня и агрессивных химикатов. Защитные конструкции из ткани (одежда для персонала, шторы, чехлы на аппаратуру для радиолокационного наблюдения) изготавливаются путем сшивания, склеивания или спаивания.

  • Фольговые материалы . Алюминиевая, цинковая или латунная фольга предназначена для наклеивания на экранируемую поверхность. Выпускается также фольга на подложке из непроводящего материала (плотная бумага, пластмасса, стекло, древесина, ткань). Для ее изготовления расплавленный металл распыляется по поверхности подложки с помощью струи сжатого воздуха.

  • Клеи . В их состав входят эпоксидная смола, мелкодисперсные порошки никеля, кобальта или железа. Такие клеи применяются при сооружении электромагнитных экранов для пайки болтовых соединений или заполнения небольших отверстий и щелей.
  • Облицовочные панели . Это листы, состоящие из металлической подложки и наклеенных на нее диэлектрического и ферритового материалов. Они используются для экранирования внутренних стен, потолков и полов лабораторий, медицинских учреждений, помещений коммерческой и военной направленности.
  • Стекла . Токопроводящая пленка, наклеенная на стекло, обеспечивает высокий уровень экранирования и практически не ухудшает оптических свойств стекла. В зависимости от металла, напыляемого на пленку (алюминий или медь), она будет иметь серебристый или золотистый оттенок. Экранирующие стекла используются при изготовлении окон и дверей.

Правила экранирования помещений

Размер экранированной комнаты зависит от ее назначения. При проведении работ необходимо соблюдать следующие правила:

  • Соединение металлических сеток или листов по периметру должно быть достаточно прочным.
  • Листовые экраны соединяются непрерывной пайкой или сваркой.
  • Сетчатые экраны соединяются точечной пайкой или сваркой с интервалом не менее 15 мм.
  • При экранировании дверей нужно обеспечить надежный электрический контакт с сеткой или металлическими панелями стен по всему периметру двери.
  • Расстояние между слоями экранирующей сетки, установленной на окнах, должно составлять не менее 50 см.
  • В экранированном помещении следует обеспечить хорошее освещение и вентиляцию.
  • Вентиляционные отверстия закрываются сотовыми экранами (на частотах меньше 1000 МГц) или оснащаются электромагнитными ловушками (на частотах свыше 1000 МГц).

Если вас интересуют материалы и компоненты для экранирования от ЭМИ, то подробнее о них вы можете узнать на этом сайте