Школьная энциклопедия. Почему при дифракции белого света происходит его разложение в спектр Дифракции белого

  • 04.07.2020

ОПРЕДЕЛЕНИЕ

Дифракционным спектром называют распределение интенсивности на экране, которое получается в результате дифракции.

При этом основная часть световой энергии сосредоточена в центральном максимуме.

Если в качестве рассматриваемого прибора, при помощи которого осуществляется дифракция, взять дифракционную решётку, то из формулы:

(где d - постоянная решетки; - угол дифракции; - длина волны света; . - целое число), следует, что угол под которым возникают главные максимумы связан с длиной волны падающего на решетку света (свет на решетку падает нормально). Это означает, что максимумы интенсивности, которые дает свет разной длины волны, возникают в разных местах пространства наблюдения, что дает возможность применять дифракционную решетку как спектральный прибор.

Если на дифракционную решетку падает белый свет, то все максимумы за исключением центрального максимума, раскладываются в спектр. Из формулы (1) следует, что положение максимума го порядка можно определить как:

Из выражения (2) следует, что с увеличением длины волны, расстояние от центрального максимума до максимума с номером m увеличивается. Получается, что фиолетовая часть каждого главного максимума будет обращена к центру картины дифракции, а красная область наружу. Следует вспомнить, что при спектральном разложении белого света фиолетовые лучи отклоняются сильнее, чем красные.

Дифракционную решетку применяют как простой спектральный прибор, с помощью которого можно определять длину волны. Если известен период решетки, то нахождение длины волны света сведется к измерению угла, который соответствует направлению на избранную линию порядка спектра. Обычно используют спектры первого или второго порядков.

Следует отметить, что дифракционные спектры высоких порядков накладываются друг на друга. Так, при разложении белого света спектры второго и третьего порядков уже частично перекрываются.

Дифракционное и дисперсное разложение в спектр

При помощи дифракции, как и дисперсии можно разложить луч света на составляющие. Однако есть принципиальные отличия в этих физических явлениях. Так, дифракционный спектр - это результат огибания светом препятствий, например затемненных зон у дифракционной решетки. Такой спектр равномерно распространяется во всех направлениях. Фиолетовая часть спектра обращена к центру. Спектр при дисперсии можно получать при пропускании света сквозь призму. Спектр получается растянутым в фиолетовом направлении и сжатым в красном. Фиолетовая часть спектра занимает большую ширину, чем красная. Красные лучи при спектральном разложении отклоняются меньше, чем фиолетовые, значит, красная часть спектра ближе к центру.

Максимальный порядок спектра при дифракции

Используя формулу (2) и принимая во внимание то, что не может быть больше единицы, получим, что:

Примеры решения задач

ПРИМЕР 1

Задание На дифракционную решетку падает перпендикулярно ее плоскости свет с длиной волны равной =600 нм, период решетки равен м. Каков наибольший порядок спектра? Чему равно число максимумов в данном случае?
Решение Основой для решения задачи служит формула максимумов, которые получают при дифракции на решетке в заданных условиях:

Максимальное значение m получится при

Проведем вычисления, если =600 нм=м:

Количество максимумов (n) будет равно:

Ответ =3;

ПРИМЕР 2

Задание На дифракционную решетку, перпендикулярно ее плоскости падает монохроматический пучок света, имеющий длину волны . На расстоянии L от решетки находится экран, на нем с помощью линзы формируют спектральную дифракционную картину. Получают, что первый главный максимум дифракции расположен на расстоянии x от центрального (рис.1). Какова постоянная дифракционной решетки (d)?
Решение Сделаем рисунок.



















































Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

(Урок получения новых знаний 11 класс, профильный уровень – 2 часа).

Образовательные цели урока:

  • Ввести понятие дифракции света
  • Объяснить дифракцию света с помощью принципа Гюйгенса-Френеля
  • Ввести понятие зон Френеля
  • Объяснить устройство и принцип действия дифракционной решетки

Развивающие цели урока

  • Развитие умений и навыков по качественному и количественному описанию дифракционных картин

Оборудование : проектор, экран, презентация.

План урока

  • Дифракция света
  • Дифракция Френеля
  • Дифракция Фраунгофера
  • Дифракционная решетка

Ход урока.

1. Организационный момент.

2. Изучение нового материала.

Дифракция - явление огибания волнами препятствий, встречающихся на их пути, или в более широком смысле - любое отклонение распространения волн вблизи препятствий от законов геометрической оптики. Благодаря дифракции волны могут попадать в область геометрической тени, огибать препятствия, проникать через небольшие отверстия в экранах и т. д. Например, звук хорошо слышен за углом дома, т. е. звуковая волна его огибает.

Если свет представляет собой волновой процесс, на что убедительно указывает явление интерференции, то должна наблюдаться и дифракция света.

Дифракция света - явление отклонения световых лучей в область геометрической тени при прохождении мимо краев препятствий или сквозь отверстия, размеры которых сравнимы с длиной световой волны (слайд№2 ).

Тот факт, что свет заходит за края препятствий, известен людям давно. Первое научное описание этого явления принадлежит Ф. Гримальди. В узкий пучок света Гримальди помещал различные предметы, в частности тонкие нити. При этом тень на экране оказывалась шире, чем это должно быть согласно законам геометрической оптики. Кроме того, по обе стороны тени обнаруживались цветные полосы. Пропуская тонкий пучок света через маленькое отверстие, Гримальди также наблюдал отступление от закона прямолинейного распространения света. Светлое пятно против отверстия оказывалось большего размера, чем это следовало ожидать при прямолинейном распространении света (слайд№2 ).

В 1802 г. Т. Юнг, открывший интерференцию света, поставил классический опыт по дифракции (слайд №3 ).

В непрозрачной ширме он проколол булавкой два маленьких отверстия В и С на небольшом расстоянии друг от друга. Эти отверстия освещались узким световым пучком, прошедшим через малое отверстие А в другой ширме. Именно эта деталь, до которой очень трудно было додуматься в то время, решила успех опыта. Интерферируют ведь только когерентные волны. Возникшая в соответствии с принципом Гюйгенса сферическая волна от отверстия А возбуждала в отверстиях В и С когерентные колебания. Вследствие дифракции от отверстий В и С выходили два световых конуса, которые частично перекрывались. В результате интерференции этих двух световых волн на экране появлялись чередующиеся светлые и темные полосы. Закрывая одно из отверстий. Юнг обнаружил, что интерференционные полосы исчезали. Именно с помощью этого опыта впервые Юнгом были измерены длины волн, соответствующие световым лучам разного цвета, причем, весьма точно.

Теория дифракции

Французский ученый О. Френель не только более детально исследовал различные случаи дифракции на опыте, но и построил количественную теорию дифракции. В основу теории Френель положил принцип Гюйгенса, дополнив его идеей об интерференции вторичных волн. Принцип Гюйгенса в его первоначальном виде позволял находить только положения волновых фронтов в последующие моменты времени, т. е. определять направление распространения волны. По существу, это был принцип геометрической оптики. Гипотезу Гюйгенса об огибающей вторичных волн Френель заменил физически ясным положением, согласно которому вторичные волны, приходя в точку наблюдения, интерферируют друг с другом (слайд №4 ).

Различают два случая дифракции:

Если преграда, на которой происходит дифракция, находится вблизи от источника света или от экрана, на котором происходит наблюдение, то фронт падающих или дифрагированных волн имеет криволинейную поверхность (например, сферическую); этот случай называется дифракцией Френеля.

Если размеры препятствия много меньше расстояния до источника, то волну, падающую на препятствие, можно считать плоской. Дифракцию плоских волн часто называют дифракцией Фраунгофера (слайд №5 ).

Метод зон Френеля.

Для объяснения особенностей дифракционных картин на простых объектах (слайд №6 ), Френель придумал простой и наглядный метод группировки вторичных источников – метод построения зон Френеля. Этот метод позволяет приближенным способом рассчитывать дифракционные картины (слайд №7 ).

Зоны Френеля – множество когерентных источников вторичных волн, максимальная разность хода между которыми равна λ/2 .

Если разность хода от двух соседних зон равна λ /2 , следовательно, колебания от них приходят в точку наблюдения М в противоположных фазах, так, что волны от любых двух соседних зон Френеля гасят друг друга (слайд №8 ).

Например, при пропускании света через отверстие малого размера, в точке наблюдения можно обнаружить как светлое, так и темное пятно. Получается парадоксальный результат – свет не проходит через отверстие!

Для объяснения результата дифракции, необходимо посмотреть, сколько зон Френеля укладывается в отверстии. Когда на отверстии укладывается нечетное число зон максимум (светлое пятно). Когда на отверстии укладывается четное число зон , то в точке наблюдения возникнет минимум (темное пятно). На самом деле свет, конечно же, проходит через отверстие, но интерференционные максимумы возникают в соседних точках (слайд №9 -11 ).

Зонная пластинка Френеля.

Из теории Френеля можно получить еще ряд замечательных, иногда парадоксальных следствий. Одно из них – возможность использования в роли собирающей линзы зонной пластинки. Зонная пластинка – прозрачный экран с чередующимися светлыми и темными кольцами. Радиусы колец подбираются так, чтокольца из непрозрачного материала закрывают все четные зоны, тогда в точку наблюдения приходят колебания только от нечетных зон, происходящих в одной и той же фазе, что приводит к увеличению интенсивности света в точке наблюдения (слайд №12 ).

Второе замечательное следствие теории Френеля – предсказание существования светлого пятна (пятна Пуассона ) в области геометрической тени от непрозрачного экрана (слайд № 13-14 ).

Для наблюдения светлого пятна в области геометрической тени необходимо, чтобы непрозрачный экран перекрывал небольшое число зон Френеля (одну-две).

Дифракция Фраунгофера.

Если размеры препятствия много меньше расстояния до источника, то волну, падающую на препятствие, можно считать плоской. Плоскую волну можно также получить, располагая источник света в фокусе собирающей линзы (слайд №15 ).

Дифракцию плоских волн часто называют дифракцией Фраунгофера по имени немецкого ученого Фраунгофера. Этот вид дифракции рассматривается особо по двум причинам. Во-первых, это более простой частный случай дифракции, а во-вторых, такого рода дифракция часто встречается в разнообразных оптических приборах.

Дифракция на щели

Большое практическое значение имеет случай дифракции света на щели. При освещении щели параллельным пучком монохроматического света на экране получается ряд темных и светлых полос, быстро убывающих по интенсивности (слайд №16 ).

Если свет падает перпендикулярно к плоскости щели, то полосы расположены симметрично относительно центральной полосы, а освещенность меняется вдоль экрана периодически, в соответствие с условиями максимума и минимума (слайд№17 , флеш-анимация «Дифракция света на щели»).

Вывод:

  • а) с уменьшением ширины щели центральная светлая полоса расширяется;
  • б) при заданной ширине щели, расстояние между полосами тем больше, чем больше длина волны света;
  • в) поэтому в случае белого света имеет место совокупность соответствующих картин для разных цветов;
  • г) при этом главный максимум будет общим для всех длин волн и представится в виде белой полоски, а боковые максимумы - это цветные полосы с чередованием цветов от фиолетового цвета к красному.

Дифракция на двух щелях.

Если имеются две идентичные параллельные щели, то они дают одинаковые накладывающиеся друг на друга дифракционные картины, вследствие чего максимумы соответственно усиливаются, а, кроме того, происходит взаимная интерференция волн от первой и второй щелей. В результате минимумы будут на прежних местах, так как это те направления, по которым ни одна из щелей не посылает света. Кроме того, возможны направления, в которых свет, посылаемый двумя щелями, взаимно гасится. Таким образом, между двумя главными максимумами располагается один добавочный минимум, а максимумы становятся при этом более узкими, чем при одной щели (слайды№18-19 ). Чем больше число щелей, тем более резко очерчены максимумы и тем более широкими минимумами они разделены. При этом световая энергия перераспределяется так, что большая ее часть приходится на максимумы, а в минимумы попадает незначительная часть энергии (слайд№20 ).

Дифракционная решетка .

Дифракционная решетка представляет собой совокупность большого числа очень узких щелей, разделенных непрозрачными промежутками (слайд№21 ). Если на решетку падает монохроматическая волна – то щели (вторичные источники) создают когерентные волны. За решеткой ставится собирающая линза, далее- экран. В результате интерференции света от различных щелей решетки на экране наблюдается система максимумов и минимумов (слайд№22 ).

Положение всех максимумов, кроме главного зависит от длины волны. Поэтому если на решетку падает белый свет, то он разлагается в спектр. Поэтому дифракционная решетка является спектральным прибором, служащим для разложения света в спектр. С помощью дифракционной решетки можно точно измерять длину волны, так как при большом числе щелей области максимумов интенсивности сужаются, превращаясь в тонкие яркие полосы, а расстояние между максимумами (ширина темных полос) растет (слайд №23-24 ).

Разрешающая способность дифракционной решетки.

Для спектральных приборов, содержащих дифракционную решетку, важна способность раздельного наблюдения двух спектральных линий, имеющих близкие длины волн.

Способность раздельного наблюдения двух спектральных линий, имеющих близкие длины волн, называют разрешающей способностью решетки (слайд №25-26 ).

Если мы хотим разрешить две близкие спектральные линии, то необходимо добиться, чтобы интерференционные максимумы, соответствующие каждой из них, были по возможности более узкими. Для случая дифракционной решетки это означает, что общее число штрихов, нанесенных на решетку, должно быть по возможности очень большим. Так, в хороших дифракционных решетках, имеющих около 500 штрихов на одном миллиметре, при общей длине около 100 мм, полное число штрихов равно 50000.

Решетки в зависимости от их применения бывают металлическими или стеклянными. Лучшие металлические решетки имеют до 2000 штрихов на один миллиметр поверхности, при этом общая длина решетки составляет 100-150 мм. Наблюдения на металлических решетках проводят только в отраженном свете, а на стеклянных – чаще всего в проходящем свете.

Наши ресницы с промежутками между ними представляют собой грубую дифракционную решетку. Если посмотреть, прищурившись, на яркий источник света, то можно обнаружить радужные цвета. Явления дифракции и интерференции света помогают

Природе раскрашивать всё живое, не прибегая к использованию красителей (слайд№27 ).

3. Первичное закрепление материала.

Контрольные вопросы

  1. Почему дифракция звука повседневно более очевидна, чем дифракция света?
  2. Каковы дополнения Френеля к принципу Гюйгенса?
  3. В чем заключается принцип построения зон Френеля?
  4. В чем заключается принцип действия зонных пластинок?
  5. Когда наблюдается дифракция Френеля, дифракция Фраунгофера?
  6. В чем отличие дифракции Френеля на круглом отверстии при освещении его монохроматическим и белым светом?
  7. Почему дифракция не наблюдается на больших отверстиях и больших дисках?
  8. Чем определяется тот факт, будет ли число зон Френеля, открываемых отверстием, четным или нечетным?
  9. Каковы характерные особенности дифракционной картины, получающейся при дифракции на малом непрозрачном диске.
  10. Каково отличие дифракционной картины на щели при освещении монохроматическим и белым светом?
  11. Какова предельная ширина щели, при которой еще будут наблюдаться минимумы интенсивности?
  12. Как влияет на дифракцию Фраунгофера от одной щели увеличение длины волны и ширины щели?
  13. Как изменится дифракционная картина, если увеличить общее число штрихов решетки, не меняя постоянной решетки?
  14. Сколько дополнительных минимумов и максимумов возникает при дифракции на шести щелях?
  15. Почему дифракционная решетка разлагает белый свет в спектр?
  16. Как определить наибольший порядок спектра дифракционной решетки?
  17. Как изменится дифракционная картина при удалении экрана от решетки?
  18. Почему при использовании белого света только центральный максимум белый, а боковые максимумы радужно окрашены?
  19. Почему штрихи на дифракционной решетке должны быть тесно расположены друг к другу?
  20. Почему штрихов должно быть большое число?

Примеры некоторых ключевых ситуаций (первичное закрепление знаний) (слайд №29-49)

  1. Дифракционная решетка, постоянная которой равна 0,004 мм, освещается светом с длиной волны 687 нм. Под каким углом к решетке нужно проводить наблюдение, чтобы видеть изображение спектра второго порядка (слайд№29 ).
  2. На дифракционную решетку, имеющую 500 штрихов на 1 мм, падает монохроматический свет длиной волны 500 нм. Свет падает на решетку перпендикулярно. Какой наибольший порядок спектра можно наблюдать? (слайд№30 ).
  3. Дифракционная решетка расположена параллельно экрану на расстоянии 0,7 м от него. Определите количество штрихов на 1 мм для этой дифракционной решетки, если при нормальном падении на нее светового пучка с длиной волны 430 нм первый дифракционный максимум на экране находится на расстоянии 3 см от центральной светлой полосы. Считать, что sinφ ≈ tgφ (слайд№31 ).
  4. Дифракционная решетка, период которой равен 0,005 мм, расположена параллельно экрану на расстоянии 1,6 м от него и освещается пучком света длиной волны 0,6 мкм, падающим по нормали к решетке. Определите расстояние между центром дифракционной картины и вторым максимумом. Считать, что sinφ ≈ tgφ (слайд № 32 ).
  5. Дифракционная решетка с периодом 10-5 м расположена параллельно экрану на расстоянии 1,8 м от него. Решетка освещается нормально падающим пучком света длиной волны 580 нм. На экране на расстоянии 20.88 см от центра дифракционной картины наблюдается максимум освещенности. Определите порядок этого максимума. Считать, что sinφ ≈ tgφ (слайд №33 ).
  6. При помощи дифракционной решетки с периодом 0,02 мм получено первое дифракционное изображение на расстоянии 3,6 см от центрального и на расстоянии 1,8 м от решетки. Найдите длину световой волны (слайд №34 ).
  7. Спектры второго и третьего порядков в видимой области дифракционной решетки частично перекрываются друг с другом. Какой длине волны в спектре третьего порядка соответствует длина волны 700 нм в спектре второго порядка? (слайд №35 ).
  8. Плоская монохроматическая волна с частотой 8 1014 Гц падает по нормали на дифракционную решетку с периодом 5 мкм. Параллельно решетке позади нее размещена собирающая линза с фокусным расстоянием 20 см. Дифракционная картина наблюдается на экране в фокальной плоскости линзы. Найдите расстояние между ее главными максимумами 1 и 2 порядков. Считать, что sinφ ≈ tgφ (слайд №36 ).
  9. Какова ширина всего спектра первого порядка (длины волн заключены в пределах от 380 нм до 760 нм), полученного на экране, отстоящем на 3 м от дифракционной решетки с периодом 0,01 мм? (слайд №37 ).
  10. Какова должна быть общая длина дифракционной решетки, имеющей 500 штрихов на 1 мм, чтобы с ее помощью разрешить две линии спектра с длинами волн 600,0 нм и 600,05 нм? (слайд №40 ).
  11. Определите разрешающую способность дифракционной решетки, период которой равен 1,5 мкм, а общая длина 12 мм, если на нее падает свет с длиной волны 530 нм (слайд №42 ).
  12. Какое наименьшее число штрихов должна содержать решетка, чтобы в спектре первого порядка можно было разрешить две желтые линии натрия с длинами волн 589 нм и 589,6 нм. Какова длина такой решетки, если постоянная решетки 10 мкм (слайд №44 ).
  13. Определите число открытых зон при следующих параметрах:
    R =2 мм; a=2.5 м; b=1.5 м
    а) λ=0.4 мкм.
    б) λ=0.76 мкм (слайд №45 ).
  14. Щель размером 1,2 мм освещается зеленым светом с длиной волны 0,5 мкм. Наблюдатель расположен на расстоянии 3 м от щели. Увидит ли он дифракционную картину (слайд №47 ).
  15. Щель размером 0,5 мм освещается зеленым светом от лазера с длиной волны 500 нм. На каком расстоянии от щели можно отчетливо наблюдать дифракционную картину (слайд №49 ).

4. Домашнее задание (слайд№50).

Учебник: § 71-72 (Г.Я. Мякишев, Б.Б. Буховцев. Физика.11).

Сборник задач по физике № 1606,1609,1612, 1613,1617 (Г.Н.Степанова).

Из соотношения d sinj = ml видно, что положения главных максимумов, кроме центрального (m = 0), в дифракционной картине от щелевой решетки зависят от длины волны используемого света l . Поэтому если решетка освещается белым или другим немонохроматическим светом, то для разных значений l все дифракционные максимумы, кроме центрального, окажутся пространственно разделенными. В результате в дифракционной картине решетки, освещаемой белым светом, центральный максимум будет иметь вид белой полосы, а все остальные – радужных полос, называемых дифракционными спектрами первого (m = ± 1), второго (m = ± 2) и т.д. порядков. В спектрах каждого порядка наиболее отклоненными будут красные лучи (с большим значением l , так как sinj ~ 1 / l ), а наименее – фиолетовые (с меньшим значением l ). Спектры получаются тем более четкими (в смысле разделения цветов), чем больше щелей N содержит решетка. Это следует из того, что линейная полуширина максимума обратно пропорциональна числу щелей N ). Максимальное число наблюдаемых дифракционных спектров определяется соотношением (3.83). Таким образом, дифракционная решетка производит разложение сложного излучения на отдельные монохроматические составляющие, т.е. проводит гармонический анализ падающего на него излучения.

Свойство дифракционной решетки разлагать сложное излучение на гармонические составляющие используется в спектральных аппаратах – приборах, служащих для исследования спектрального состава излучения, т.е. для получения спектра излучения и определения длин волн и интенсивностей всех его монохроматических компонент. Принципиальная схема спектрального аппарата приведена на рис. 6. Свет от исследуемого источника попадает на входную щель S прибора, находящуюся в фокальной плоскости коллиматорного объектива L 1 . Образующаяся при прохождении через коллиматор плоская волна падает на диспергирующий элемент D , в качестве которого используется дифракционная решетка. После пространственного разделения лучей диспергирующим элементом выходной (камерный) объектив L 2 создает монохроматическое изображение входной щели в излучении разных длин волн в фокальной плоскости F . Эти изображения (спектральные линии) в своей совокупности и составляют спектр исследуемого излучения.

Как спектральный прибор дифракционная решетка характеризуется угловой и линейной дисперсией, свободной областью дисперсии и разрешающей способностью. Как спектральный прибор дифракционная решетка характеризуется угловой и линейной дисперсией, свободной областью дисперсии и разрешающей способностью.

Угловая дисперсия D j характеризует изменение угла отклонения j луча при изменении его длины волны l и определяется как

D j = dj / dl ,

где dj - угловое расстояние между двумя спектральными линиями, отличающимися по длине волны на dl . Дифференцируя соотношение d sinj = ml , получим d cosj ×j¢ l = m , откуда

D j = j¢ l = m / d cosj .

В пределах небольших углов cosj @ 1, поэтому можно положить

D j @ m / d .

Линейная дисперсия определяется выражением

D l = dl / dl ,

где dl – линейное расстояние между двумя спектральными линиями, отличающимися по длине волны dl .

Из рис. 3.24 видно, что dl = f 2 dj , где f 2 – фокусное расстояние объектива L 2 . С учетом этого получаем соотношение, связывающее угловую и линейную дисперсии:

D l = f 2 D j .

Спектры соседних порядков могут перекрываться. Тогда спектральный аппарат становится непригодным для исследования соответствующего участка спектра. Максимальная ширина Dl спектрального интервала исследуемого излучения, при которой спектры соседних порядков еще не перекрываются, называется свободной областью дисперсии или дисперсионной областью спектрального аппарата. Пусть длины волн падающего на решетку излучения лежат в интервале от l до l + Dl . Максимальное значение Dl , при котором перекрытия спектров еще не происходит, можно определить из условия наложения правого конца спектра m -го порядка для длины волны l + Dl на левый конец спектра

(m + 1)-го порядка для длины волны l , т.е. из условия

d sinj = m (l + Dl ) = (m + 1)l ,

Dl = l / m .

Разрешающая способность R спектрального прибора характеризует способность прибора давать раздельно две близкие спектральные линии и определяется отношением

R = l / d l ,

где d l – минимальная разность длин волн двух спектральных линий, при которой эти линии воспринимаются как раздельные спектральные линии. Величину d l называют разрешаемым спектральным расстоянием. Вследствие дифракции на действующем отверстии объектива L 2 каждая спектральная линия изображается спектральным аппаратом не в виде линии, а в виде дифракционной картины, распределение интенсивности в которой имеет вид sinc 2 -функции. Так как спектральные линии с различ-

ными длинами волн не когерентны, то результирующая дифракционная картина, создаваемая такими линиями, будет представлять собой простое наложение дифракционных картин от каждой щели в отдельности; результирующая интенсивность будет равна сумме интенсивностей обеих линий. Согласно критерию Рэлея, спектральные линии с близкими длинами волн l и l + d l считаются разрешенными, если они находятся на таком расстоянии d l , что главный дифракционный максимум одной линии совпадает по своему положению с первым дифракционным минимумом другой линии. В этом случае на кривой суммарного распределения интенсивности (рис. 3.25) образуется провал (глубиной, равной 0,2I 0 , где I 0 – максимальная интенсивность, одинаковая для обеих спектральных линий), что и позволяет глазу воспринимать такую картину как двойную спектральную линию. В противном случае две близко расположенные спектральные линии воспринимаются как одна уширенная линия.

Положение m -го главного дифракционного максимума, соответствующего длине волны l , определяется координатой

x¢ m = f tgj @ f sinj = ml f / d .

Аналогично находим и положение m -го максимума, соответствующего длине волны l + d l :

x¢¢ m = m (l + d l ) f / d .

При выполнении критерия Рэлея расстояние между этими максимумами составит

Dx = x¢¢ m - x¢ m = md l f / d

равно их полуширине d x =l f / d (здесь, как и выше, полуширину мы определяем по первому нулю интенсивности). Отсюда находим

d l = l / (mN ),

и, следовательно, разрешающая способность дифракционной решетки как спектрального прибора

Таким образом, разрешающая способность дифракционной решетки пропорциональна числу щелей N и порядку спектра m . Положив

m = m max @ d / l ,

получим максимальную разрешающую способность:

R max = (l /d l ) max = m max N @ L / l ,

где L = Nd – ширина рабочей части решетки. Как видим, максимальная разрешающая способность щелевой решетки определяется только шириной рабочей части решетки и средней длиной волны исследуемого излучения. Зная R max , найдем минимально разрешимый интервал длин волн:

(d l ) min @ l 2 / L.

Одномерная дифракционная решетка представляет собой систему из большого числа N одинаковых по ширине и параллельных друг другу щелей в экране, разделенных также одинаковыми по ширине непрозрачными промежутками (рис. 9.6).

Дифракционная картина на решетке определяется как результат взаимной интерференции волн, идущих от всех щелей, т.е. в дифракционной решетке осуществляется многолучевая интерференция когерентных дифрагированных пучков света, идущих от всех щелей.

Обозначим: b ширина щели решетки; а – расстояние между щелями; постоянная дифракционной решетки .

Линза собирает все лучи, падающие на нее под одним углом и не вносит никакой дополнительной разности хода.

Рис. 9.6 Рис. 9.7

Пусть луч 1 падает на линзу под углом φ (угол дифракции ). Световая волна, идущая под этим углом от щели, создает в точке максимум интенсивности. Второй луч, идущий от соседней щели под этим же углом φ, придет в ту же точку . Оба эти луча придут в фазе и будут усиливать друг друга, если оптическая разность хода будет равна m λ:

Условие максимума для дифракционной решетки будет иметь вид:

, (9.4.4)

где m = ± 1, ± 2, ± 3, … .

Максимумы, соответствующие этому условию, называются главными максимумами . Значение величины m , соответствующее тому или иному максимуму называется порядком дифракционного максимума.

В точке F 0 всегда будет наблюдаться нулевой или центральный дифракционный максимум .

Так как свет, падающий на экран, проходит только через щели в дифракционной решетке, то условие минимума для щели и будет условием главного дифракционного минимума для решетки :

. (9.4.5)

Конечно, при большом числе щелей, в точки экрана, соответствующие главным дифракционным минимумам, от некоторых щелей свет будет попадать и там будут образовываться побочные дифракционные максимумы и минимумы (рис. 9.7). Но их интенсивность, по сравнению с главными максимумами, мала (≈ 1/22).

При условии ,

волны, посылаемые каждой щелью, будут гаситься в результате интерференции и появятся дополнительные минимумы .

Количество щелей определяет световой поток через решетку. Чем их больше, тем большая энергия переносится волной через нее. Кроме того, чем больше число щелей, тем больше дополнительных минимумов помещается между соседними максимумами. Следовательно, максимумы будут более узкими и более интенсивными (рис. 9.8).

Из (9.4.3) видно, что угол дифракции пропорционален длине волны λ. Значит, дифракционная решетка разлагает белый свет на составляющие, причем отклоняет свет с большей длиной волны (красный) на больший угол (в отличие от призмы, где все происходит наоборот).


Дифракционный спектр - Распределение ин­тенсивности на экране, получаемое вследствие дифракции (это явление приведено на нижнем рис.). Основная часть световой энергии сосредо­точена в центральном максимуме. Сужение щели приводит к тому, что центральный максимум расплывается, а его яркость уменьшается (это, естественно, относится и к другим максимумам). Наоборот, чем щель шире (), тем картина ярче, но дифракционные полосы уже, а число самих полос больше. При в центре получа­ется резкое изображение источника света, т.е. имеет мет прямолинейное распространение света. Эта картина будет иметь место только для монохроматического света. При освещении щели белым светом, центральный максимум будет иметь место белой полоски, он общий для всех длин волн (при разность хода равна нулю для всех).

Набежал легкий ветерок, и по поверхности воды побежала рябь (волна малой длины и амплитуды), встречая на своем пути различные препятствия, над поверхностью воды, стебли растений, сук дерева. С подветренной стороны за суком вода спокойная, волнения нет, а стебли растений волна огибает.

ДИФРАКЦИЯ ВОЛН (от лат. difractus – разломанный) огибание волнами различных препятствий. Дифракция волн свойственна всякому волновому движению; имеет место, если размеры препятствия меньше длины волны или сравнимы с ней.

Дифракцией света называется явление отклонения света от прямолинейного направления распространения при прохождении вблизи препятствий. При дифракции световые волны огибают границы непрозрачных тел и могут проникать в область геометрической тени.
Препятствием может быть отверстие, щель, край непрозрачной преграды.

Проявляется дифракция света в том, что свет проникает в область геометрической тени в нарушение закона прямолинейного распространения света. Например, пропуская свет через маленькое круглое отверстие, обнаруживаем на экране светлое пятно большего размера, чем следовало ожидать при прямолинейном распространении.

Из-за того, что длина световой волны мала, угол отклонения света от направления прямолинейного распространения невелик. Поэтому для отчетливого наблюдения дифракции нужно использовать очень маленькие препятствия или располагать экран далеко от препятствий.

Дифракция объясняется на основе принципа Гюйгенса–Френеля: каждая точка волнового фронта является источником вторичных волн. Дифракционная картина является результатом интерференции вторичных световых волн.

Волны, образованные в точках А и В, являются когерентными. Что наблюдается на экране в точках О, M, N?

Дифракция хорошо наблюдается только на расстояния

где R – характерные размеры препятствия. На меньших расстояниях применимы законы геометрической оптики.

Явление дифракции накладывает ограничение на разрешающую способность оптических инструментов (например, телескопа). Вследствие ее в фокальной плоскости телескопа образуется сложная дифракционная картина.

Дифракционная решетка – представляет собой совокупность большого числа находящихся в одной плоскости узких, параллельных, близко расположенных друг к другу прозрачных для света участков (щелей), разделенных непрозрачными промежутками.

Дифракционные решетки бывают отражающие и пропускающие свет. Принцип их действия одинаков. Решетку изготовляют с помощью делительной машины, наносящей периодические параллельные штрихи на стеклянной или металлической пластине. Хорошая дифракционная решетка содержит до 100 000 штрихов. Обозначим:

a – ширина прозрачных для света щелей (или отражающих полос);
b – ширина непрозрачных промежутков (или рассеивающих свет участков).
Величина d = a + b называется периодом (или постоянной) дифракционной решетки.

Дифракционная картина, создаваемая решеткой сложная . В ней наблюдаются главные максимумы и минимумы, побочные максимумы, дополнительные минимумы, обусловленные дифракцией на щели.
Практической значение при исследовании спектров с помощью дифракционной решетки имеют главные максимумы, представляющие собой узкие яркие линии в спектре. Если на дифракционную решетку падает белый свет, волны каждого цвета, входящего в его состав, образуют свои дифракционные максимумы . Положение максимума зависит от длины волны. Нулевые максимумы (k = 0 ) для всех длин волн образуются в направлениях падающего пучка = 0 ), поэтому в дифракционном спектре есть центральная светлая полоса. Слева и справа от нее наблюдаются цветные дифракционные максимумы разного порядка. Так как угол дифракции пропорционален длине волны, то красные лучи отклоняются сильнее, чем фиолетовые. Обратите внимание на различие в порядке расположения цветов в дифракционном и призматическом спектрах. Благодаря этому дифракционная решетка используется в качестве спектрального аппарата, наряду с призмой.

При прохождении через дифракционную решетку световая волна длиной λ на экране будет давать последовательность минимумов и максимумов интенсивности. Максимумы интенсивности будут наблюдаться под углом β:

где k – целое число, называемое порядком дифракционного максимума.

Опорный конспект: