Практическое применение явления электромагнитной индукции

  • 20.09.2019

Ч. 1

(22 сентября 1791 г. - 25 августа 1867 года)

Великий английский ученый, основоположник учения об электромагнитном поле, родился 22 сентября 1791 г. в местечке Ньюингтон-Бетте вблизи Лондона.

В 1816 г. в журнале Королевского института была напечатана его первая работа по химии – «Анализ естественной едкой извести», а в 1818 г. им была выполнена первая работа по физике – о поющем пламени. В декабре 1821 г. Он «заставил» вращаться проволоку с током около магнитного полюса, впервые произошло превращение электрической энергии в механическую. Была подготовлена научная почва для создания электродвигателей.

8 января 1824 г. М. Фарадей был избран в члены Королевского общества, а в 1827 г. получил кафедру в Королевском институте. 29 августа 1831 г. М. Фарадей установил, что при замыкании и размыкании электричес-кой цепи с током в первичной обмотке возникал индукционный ток. 17 октября 1831 г. М. Фарадей обнаружил, что при быстром вдвижении железного сердечника в катушку в определенный момент в цепи возникал ток. Но лишь в 1851 г. он дал законченную формулировку закона индукции.

М. Фарадей изучил электролиз и установил законы этого явления (1833-1834).

(18 февраля 1745 г. - 5 марта 1827 г.)
Выдающийся итальянский физик Алессандро Вольта родился 18 февраля 1745 г. в г. Комо (возле Милана) в старинной знатной семье. Первое научное исследование А. Вольта было посвящено лейденской банке. В 1771 г. вышла в свет его работа «Эмпирические исследования способов возбуждения электричества и улучшение конструкции машин». В 1774 г. А. Вольта становится преподавателем физики в г. Комо, а в 1775 г. создает электрофор. В 1779 году он стал профессором физики Павийского университета. В 1780 г. ученый занялся проблемой атмосферного электричества и создал электроскоп с конденсатором. Уже в 1792 г. он пришел к заключению, что металлы являются не только совершенными проводниками, но и двигателями электричества. В 1796 – 1797 гг. А. Вольта установил закон напряжений, по которому напряжение между крайними металлами цепи равно напряжению, возникающему при непосредственном контакте этих металлов. В 1799 г. он добился значительного увеличения напряжения путем использования прокладок из смоченного картона между парами металлов медь - цинк. Был создан «вольтов столб». В 1815 – 1819 гг. А. Вольта был директором философского факультета в Падуе, а затем ушел из университета и переехал на родину, в г. Комо. Последние годы жизни ученого прошли очень скромно. Его посещали многие видные люди того времени.

Исаак Ньютон родился в 1643 г. в местечке Вулсторп около города Грантема, расположенного в центре Британии, в семье небогатого фермера. В 12 лет его отправили учиться в г. Грантем в королевскую школу.

Во время учебы Исаак мастерил сложные механические модели различных машин. Своим первым физическим опытом Ньютон считал измерение силы ветра во время бури в 1658 г.

Основную часть своих открытий Ньютон совершил в течение двух лет (1665 – 1667) по окончании Кембриджского университета. В то время когда в Англии свирепствовала чума, Ньютон, чтобы избежать заражения, уехал в родной Вулсторп, где погрузился в научную работу. Рассказывают, что идея закона всемирного тяготения пришла к Ньютону в тот момент, когда, сидя в саду, он наблюдал падение яблока на землю. Здесь же он понял, почему свет, преломившись в стеклянной призме, распадается на цветные лучи. Всю дальнейшую жизнь Ньютон приводил в порядок и публиковал открытия, сделанные им в Вулсторпе. Последние 25 лет жизни Ньютон был президентом Лондонского Королевского общества – английской академии наук. Исаак

Ньютон умер 20 марта 1727 г. в возрасте 84 лет. По указу короля Генриха 1 его похоронили в усыпальнице королей – Вестминстерском аббатстве.

(1564 г. – 1642 г.)

Знаменитый итальянский ученый родился в 1564 г. Галилей был одним из основателей точного естествознания, боролся против схоластики, считал основой познания опыт.

Заложил основы современной механики: выдвинул идею об относительности движения, установил законы инерции, свободного падения и движения тел по наклонной плоскости, сложения движений; открыл изохронность колебаний маятника; первым исследовал прочность балок. Построил телескоп с 32-кратным увеличением и открыл горы на Луне, четыре спутника Юпитера, фазы Венеры, пятна на Солнце. Активно защищал гелиоцентрическую систему мира, за что был подвергнут суду инквизиции (1633), вынудившей его отречься от учения Н. Коперника. Согласно легенде, Галилей после своего вынужденного отречения воскликнул: «А все-таки она вертится!»

До конца жизни Галилей считался «узником инквизиции» и принужден был жить на своей вилле Арчетри близ Флоренции. Галилео Галилей умер в 1642 г. В 1992 г. Папа Иоанн-Павел II объявил решение суда инквизиции ошибочным и реабилитировал Галилея.

Альберт Эйнштейн – родился 14 марта 1879 года в маленьком городке Ульме, из которого семья позже переехала в Мюнхен, а в 1893 году - в Швейцарию.

В 1905 году никому неизвестный эксперт патентного бюро публикует работу, посвященную частной теории от-носительности под названием «К электродинамике движущихся тел». В этом же году он дает объяснение фотоэффекта на основе квантовой гипотезы Планка.

В течение 1907-1916 годов создает общую теорию относительности – теорию тяготения.

С 1914 года Эйнштейн продолжает свою научную деятельность в Германии. Работа Эйнштейна по теории броуновского движения привела к окончательной победе молекулярно- кинетической теории строения вещества.

В 30-е годы он вплотную сталкивается с фашизмом. Его, ученого с мировым именем, зачисляют в разряд врагов гитлеровского режима. В 1933 году Эйнштейн вынужден был эмигрировать в США, где и продолжал свою научную и общественную деятельность до самой смерти.

Нильс Хендрик Давид Бор (1885 – 1962) – известнейший датский физик, один из создателей современной физики.

В 1908 г. Н. Бор окончил Копенгагенский университет.

В 1911-1912 гг. работал в Кембриджском университете под руководством Дж. Дж. Томсона и в Манчестерском университете под руководством Э. Резерфорда. С 1916 г. – профессор Копенгагенского университета, а с 1920 г.- директор Института теоретической физики в Копенгагене. Создал теорию атома, в основу которой легли планетарная модель атома, квантовые представления и предложенные им постулаты. Им написаны важные работы по теории металлов, теории атомного ядра и ядерных реакций. В 1922 году он получает Нобелевскую премию.

В Копенгагене Бор создал большую интернациональную школу физиков и много сделал для развития сотрудничества между физиками всего мира. Нильс Бор активно участвовал в борьбе против атомной угрозы человечеству.

Энрико Ферми – выдающийся итальянский физик родился 29 сентября 1901 года в Риме. Он имеет мно -гочисленные работы в области атомной физики, статичес- кой механики, физики космических лучей, физики высоких энергий, астрофизики и технической физике. Ферми является одним из основоположников квантовой электро- динамики, автором канонических правил квантования поля.

В 1933-1934 годах создал количественную теорию бета-распада, положившую начало теории слабых взаимодействий.

В 1934 году открыл искусственную радиоактивность, обусловленную нейтронами, обнаружил явление замедления нейтронов и дал его теорию, за что в 1938 году ему была присуждена Нобелевская премия, высказал идею о получении в результате облучения ядер урана нейтронами новых (заурановых) элементов. Выехав за получением Нобелевской премии в Стокгольм вместе с семьей, он не вернулся в Италию, где фашистская диктатура Муссолини, по существу, ликвидировала условия для нормальной научной работы. В США (г. Чикаго) он построил первый ядерный реактор и 2 декабря 1942 года впервые осуществил его запуск, получив самоподдерживающуюся цепную реакцию. Положил начало оптике и нейтронной спектроскопии. Он являлся членом многих академий наук и научных обществ. В его честь назван 100-й химический элемент в США учреждена премия его имени.

Генрих Рудольф Герц родился 22 февраля 1857 г. в Гамбурге в семье известного адвоката. Юный Герц увлекался проблема ми астрономии, физики и математики. Вначале Герц намерен был получить инженерное образование, для чего поступил в Дрезденский политехникум, а затем продолжил обучение в Мюнхене. В возрасте 20 лет он переходит в Берлинский университет, где слушает лекции по математике и физике, изучает работы классиков точных наук и знакомится с историей естествознания. В эти годы Герц делает прекрасную экспериментальную работу на тему «Обладает ли электрический ток кинетической энергией?», а затем и теоретическую докторскую «О вращении тел в магнитном поле». В 23 года Герц оканчивает обучение в Берлине и в качестве ассистента работает в Физическом институте. В 1883 г. он отправляется в провинциальный университет в Киле. Лишь с переездом в 1884 г. в Карлсруэ уже в качестве профессора Высшей технической школы, Герц проводит свои знаменитые эксперименты по получению электромагнитных волн и изучению их свойств.

С 1889 г. и до конца своих дней Герц работает в Боннском университете, где он занимается систематизацией основных положений электромагнитной теории.

Предчувствие близкой смерти побудило ученого в декабре 1893 г. написать родителям: «Если со мной действительно что-то случится, вы должны не печалиться, а …гордиться и думать, что я принадлежу к избранным, которые живут мало, но все же достаточно». Генрих Герц скончался 1 января 1894 г. не дожив 2 месяца до 37 лет.

(18 декабря 1856 г. - 30 августа 1940 г.)

Дж. Дж. Томсон , или, как его позднее называли, «Джи-Джи», родился 18 декабря 1856 г. в предместье г. Манчестера в семье букиниста. Собираясь стать инженером, он в 14 лет поступил в колледж Оуэна (впоследствии Манчестерский университет), однако после смерти отца и ввиду недостатка средств не смог продолжить свое обучение. Самостоятельно изучив математику, физику и химию, он получил высшее образование в Тринити колледже Кембриджского университета. После того как ему присуждена ученая степень по математике, он работает в Кавендишской лаборатории под руководством Дж. Рэлея. В 28 лет профессор Томсон возглавит эту лабораторию, оставаясь ее директором 20 лет. В ней он проведет свои основные экспериментальные и теоретические исследования и здесь же создаст знаменитую научную школу, воспитавшую 8 лауреатов Нобелевской премии, 27 членов Лондонского королевского общества и 80 профессоров физики для многих европейских стран.

В 1906 г. Дж. Дж. Томсону была присуждена Нобелевская премия «за исследования прохождения электричества через газы».

Александр Степанович Попов – русский физик, изобретатель радио. Родился в п. Турьинские рудники (ныне г. Краснотурьинск Свердловской области). В 1877 г. поступил на физико-математический факультет Петербургского университета, где принимал активное участие в работе Физической лаборатории университета, стал прекрасным экспериментатором, увлекся электротехникой. После окончания университета работал в обществе «Электротехника», а затем был приглашен преподавать физику и электротехнику в военных учебных заведениях. С 1901 г. Попов стал заведовать кафедрой физики Петербургского электротехнического института. После опубликования в 1888 г. работ Г. Герца по получению электромагнитных волн начал изучать электромагнитные явления. Убежденный в возможности связи без проводов при помощи электромагнитных волн, Попов построил первый в мире радиоприемник, применив в его схеме чувствительный элемент – когерер. 25 апреля (7 мая по новому стилю) 1895 г. Попов сделал научный доклад об изобретении им системы связи без проводов и продемонстрировал её работу. Во время опытов по радиосвязи с помощью приборов Попова было впервые обнаружено отражение радиоволн от корабля. Признанием заслуг Попова явилось постановление Совета Народных Комиссаров считать 7 мая Днем радио. Академией наук СССР установлена золотая медаль им. А. С. Попова.

Гюйгенс Христиан (1629 – 1695) –голландский физик и математик. Родился в Гааге. Поступив в Лейденский университет, Гюйгенс по настоянию отца обучался юридическим наукам. В 1655 г. Гюйгенс защитил во Франции диссертацию на степень доктора права. Наряду с этим он много времени уделяет занятиям по оптике. Он изготовил телескоп с помощью которого Гюйгенс открыл спутник Сатурна Титан. В 1657 г. им впервые были построены маятниковые часы. Гюйгенс впервые использовал маятник для достижения регулярного хода часов и вывел формулу для периода колебаний математического и физического маятников. В 1659 г. Гюйгенс напечатал книгу о Сатурне, в которой объяснял вид планеты. Он первый увидел и описал кольцо, окружающее Сатурн. В 1663 г. Гюйгенс был избран членом Лондонского королевского общества. В 1665 г. его приглашают в Париж в Королевскую академию наук в качестве её председателя.

Гюйгенс создатель первой волновой теории света. Основы этой теории Гюйгенс изложил в «Трактате о свете» (1690).

Математические работы Гюйгенса касались исследования конических сечений, циклоиды и других кривых. Ему принадлежит одна из первых работ по теории вероятности.

Курчатов Игорь Васильевич - советский физик и организатор науки, трижды Герой Социалистического труда. Родился в п. Сим на Южном Урале в семье помощника лесничего. После окончания гимназии он в 1920 г. поступает в Крымский университет. После досрочного окончания университета переезжает в Петроград, где продолжает учебу в Политехническом институте. В 1925 г. Курчатов начал работать в Физико-техническом институте. Физикой атомного ядра он занимался с 30-х годов. В 1943 г. Курчатов возглавлял научные работы, связанные с атомной проблемой. Под го руководством были созданы первый в Европе атомный реактор (1946), первая советская атомная бомба (1949)и термоядерная бомба. Под научным руководством Курчатова были сооружены первая в мире промышленная атомная электростанция (1954г.), крупнейшая установка для проведения исследований по осуществлению регулируемых термоядерных реакций (1958 г.)

Ранние работы Курчатова относятся к исследованию сегнетоэлектриков, ядерных реакций, вызываемых нейтронами, искусственной радиоактивности. Курчатов открыл существование возбужденных состояний ядер с относительно большим временем жизни.

Склодовская-Кюри Мария - физик и химик. Родилась в Польше, в семье учителя, работала во Франции.

Мария Склодовская стала первой в истории Сорбонны женщиной-преподавателем. В Сорбонне она встретила Пьера Кюри, также преподавателя, за которого позже вышла замуж. Вместе они занялись исследованием аномальных лучей (рентгеновских), которые испускали соли урана. Не имея никакой лаборатории, и работая в сарае на улице Ломон в Париже, с 1898 по 1902 годы они переработали 8 тонн руды урана и выделили одну сотую грамма нового вещества - радия. Позже был открыт полоний - элемент названный в честь родины Марии Кюри. В 1903 году Мария и Пьер Кюри получили Нобелевскую премию по физике «за выдающиеся заслуги в совместных исследованиях явлений радиации». Будучи на церемонии награждения, супруги задумываются создать собственную лабораторию, и даже институт радиоактивности. Их затея была воплощена в жизнь, но гораздо позже.

После трагической смерти мужа Пьера Кюри в 1906 году Мария Склодовская-Кюри унаследовала его кафедру в Парижском университете.

В 1910 г. ей удалось в сотрудничестве с Андре Дебьерном выделить чистый металлический радий, а не его соединений, как бывало прежде. Таким образом, был завершен 12-летний цикл исследований, в результате которого было доказано, что радий является самостоятельным химическим элементом. В 1911 г. Склодовская-Кюри получила Нобелевскую премию по химии «за выдающиеся заслуги в развитии химии: открытие элементов радия и полония, выделение радия и изучение природы и соединений этого замечательного элемента». Склодовская-Кюри стала первым (и на сегодняшний день единственной женщиной в мире) дважды лауреатом Нобелевской премии.



Петр Николаевич Лебедев (1866-1912) – русский физик, родился в Москве в купеческой семье.

После завершения среднего образования учился в Германии. В 1891 г. Лебедев возвращается в Москву и по приглашению А.Г. Столетова становится преподавателем, а с 1900 по 1911 г.- профессором Московского университета. Он впервые измерил давление света на твердые тела и газы. Эти работы Лебедева количественно подтвердили теорию Максвелла.

Стремясь найти новые экспериментальные доказательства электромагнитной теории света, Лебедев получил электромагнитные волны миллиметровой длины и исследовал все их свойства.

Лебедев создал первую в России физическую школу. Его учениками являются многие выдающиеся советские ученые. Имя Лебедева носит физический институт АН СССР (ФИАН)

(29 июля (10 августа) 1839 г. - 15 (27) мая 1896 г.)
Столетов Александр Григорьевич - русский физик, профессор Московского университета (с 1873 г.) Столетов родился во Владимире, в купеческой семье. После окончания в 1860г. Московского университета был оставлен при университете для подготовки к профессорскому званию. В 1862-1865 г. он продолжил свое образование во Франции и Германии. Исследование фотоэффекта доставило Столетову мировую известность. Столетов также возможность применения фотоэффекта на практике. В докторской диссертации «Исследование о функции намагничения мягкого железа» он разработал метод исследования ферромагнетиков и установил вид кривой намагничения. Эта работа широко использовалась на практике при конструировании электрических машин. Много сил отдал Столетов развитию физики в России. Он явился инициатором создания физического института при Московском университете.

(23 апреля 1858 г. - 4 октября 1947 г.)

Планк Макс – великий немецкий физик-теоретик, основатель квантовой теории – современной теории движения, взаимодействия и взаимных превращений микроскопических частиц. Родился в семье юристов и учёных, много внимания уделявшей развитию способностей детей. Окончил гимназию в Мюнхене, где наряду с высокой одарённостью по многим дисциплинам показал высокую прилежность и работоспособность. Решение стать физиком далось непросто - наряду с естественными дисциплинами привлекали музыка и философия. Физику изучал в Берлине и Мюнхене.

После защиты диссертации преподавал с 1885 г. по 1889 г. в Киле, а затем с 1889 г. по 1926 г. в Берлине. С 1930 г. по 1937 г. Планк возглавлял Общество кайзера Вильгельма (с 1948 г преобразовано в Общество Макса Планка).

Свои исследования Планк посвящал в основном вопросам термодинамики. Известность он приобрёл после объяснения спектра так называемого «абсолютно чёрного тела» В 1900 г. В работе, посвященной равновесному тепловому излучению, Планк впервые ввел предположение о том, что энергия осциллятора (системы, совершающей гармонические колебания) принимает дискретные значения, пропорциональные частоте колебаний. Излучается электромагнитная энергия осциллятором отдельными порциями.

Вильгельм Конрад Рентген родился в Линнепе (современное название Ремшайд) единственным ребёнком в семье. Первое образование Вильгельм получает в частной школе Мартинуса фон Дорна. С 1861 он посещает Утрехтскую Техническую школу, однако в 1863 его отчисляют из-за несогласия выдать нарисовавшего карикатуру на одного из преподавателей.

В 1865 году Рентген пытается поступить в Утрехтский университет, несмотря на то, что по правилам он не мог быть студентом этого университета. Затем он сдаёт экзамены в Федеральный политехнический институт Цюриха, и становится студентом отделения механической инженерии, после чего в 1869 году выпускается со степенью доктора философии.Однако, поняв, что его больше интересует физика, Рентген решил перейти учиться в университет. После успешной защиты диссертации он приступает к работе в качестве ассистента на кафедре физики в Цюрихе, а потом в Гиссене. В период с 1871 по 1873 год Вильгельм работал в Вюрцбургском университете, а затем вместе со своим профессором Августом Адольфом Кундтом перешёл в Страсбургский университет в 1874 году, в котором проработал пять лет в качестве лектора (до 1876 года), а затем в качестве профессора (с 1876 года). Также в 1875 году Вильгельм становится профессором Академии Сельского Хозяйства в Каннингеме (Виттенберг). Уже в 1879 году он был назначен на кафедру физики в университете Гиссена, которую впоследствии возглавил. С 1888 года Рентген возглавил кафедру физики в Университете Вюрцбурга, позже, в 1894 году, его избирают ректором этого университета. В 1900 году Рентген стал руководителем кафедры физики университета Мюнхена - она стала последним местом его работы. Позже, по достижении предусмотренного правилами предельного возраста, он передал кафедру Вильгельму Вину, но всё равно продолжал работать до самого конца жизни.

5 (17) сентября 1857 г. - 19 сентября 1935 г.)

Константин Эдуардович Циолковский – русский ученый, основоположник современной космонавтики. Начиная с 1896 г. он занимался теорией движения реактивных аппаратов и предложил ряд схем ракет дальнего действия и ракет для межпланетных станций. В 1903 г. была опубликована часть его статьи «Исследование мировых пространств реактивными приборами». В этой статье, а также в работах 1911 и 1914 гг. он заложил основы теории ракет и жидкостного ракетного двигателя. Им впервые была решена задача посадки космического аппарата на поверхность планет, лишенных атмосферы. В 1926-1929 гг. Циолковский разработал теорию многоступенчатых ракет. Он первым решил задачу о движении ракет в гравитационном поле, рассмотрел влияние атмосферы на полет ракеты и вычислил необходимые запасы топлива для преодоления сил сопротивления воздушной оболочки Земли. Им же была высказана идея создания околоземных станций. Циолковский написал ряд работ, в которых уделил внимание использованию искусственных спутников Земли в народном хозяйстве.

Андре Мари Ампер(1775-1836) – французский физик и математик, родился в г. Лионе. Под руководством отца он получил домашнее образование. Амперу было 14 лет, когда он прочитал 20 томов «Энциклопедии». Трудовая деятельность Ампер начал в качестве домашнего учителя математики, физики и химии. В 1801 г. он был принят на должность учителя физики и химии в Центральную школу в Бурк-ан-Брес. В 1805 г. Ампер занимает место преподавателя математики в Политехнической школе в Париже. В 1814 г. Ампера избирают членом Парижской академии наук. В 1824 г. занимает должность профессора физики Нормальной школы в Париже.

Ампер открыл механическое взаимодействие токов и на основании гипотезы о существовании молекулярных токов построил первую теорию магнетизма.

В 1826 г. Ампер подготовил и издал свой основной труд – «Теория электродинамических явлений, выведенная исключительно из опыта».

В честь Ампера названа единица силы тока – ампер.

(16 марта 1787 г. – 6 июля 1854 г.)
Георг Симон Ом (1787-1854) – немецкий физик. Родился в г. Эрлангене в семье ремесленника. Окончив гимназию, Ом поступил в Эрлангенский университет, но прервал обучение из-за материальных затруднений. Работал учителем в Готштадте (Швейцария). Самостоятельно подготовил докторскую диссертацию и защитил её в Эрлангенском университете в 1811 г. После этого Ом преподавал математику, физику в различных школах в Германии. В 1826 г. Ом установил формулу для постоянного тока в электрической цепи, известную теперь как закон Ома. Признание Ома пришло не сразу, а лишь спустя примерно 10 лет после его открытия. Кроме исследований по электричеству, Омом были выполнены работы по оптике, кристаллооптике, акустике. В 1833 г. Ом стал директором Политехнической школы в Нюрнберге, в 1849 – профессором Мюнхенского университета. Признанием важности сделанного Омом открытия явилось его избрание в 1842 г. членом Лондонского королевского общества. В честь Ома названа единица электрического сопротивления.


(21 сентября 1801 г. - 11 марта 1874 г.)

Борис Семенович Якоби – русский физик и электротехник, академик Петербургской академии наук.

Якоби родился в Потсдаме (Германия). Окончил Геттингенский университет. С 1837 г. жил в Петербурге и принял русское подданство. Якоби сконструировал первый в мире практически пригодный электродвигатель с непрерывным вращательным движением вала и в 1838 г. впервые применил его для движения судна (испытания «электрохода» Якоби проводились на р. Неве). Якоби является изобретателем гальванопластики и в 1840 г. опубликовал полное описание гальванопластического процесса. Якоби принадлежит ряд теоретических исследований, относящихся к работе электродвигателя. Он разработал несколько конструкций телеграфных аппаратов и одним из первых в мире построил действовавшие кабельные телеграфные линии. Своей деятельностью ученый во многом способствовал установлению системы мер, участвовал в разработке эталонов, выборе единиц измерений.

Николай Коперник - польский ученый. Родился в г. Торунь, выходец из купеческой семьи. Коперник получил разносторонне образование. Закончив кафедральную школу во Влоцлавске, Коперник в возрасте 19 лет поступил в Краковский университет, где изучал астрономию и искусство наблюдений. Для продолжения образования он в 1496 г. переехал в Италию. Сначала Коперник в знаменитом Болонском университете изучал юридические науки, а также математику. В 1501 г. он продолжает образование в Падуанском университете, где изучает медицину. В1503 г. ему был вручен докторский диплом. Возвратившись на родину, Коперник вскоре переехал во Фромборк, где занял духовную должность. Научная деятельность Коперника во Фромборке была весьма разно-образной. Он разрабатывает новую, гелиоцентрическую, систему мира, конструирует простейшие инструменты для наблюдения и измерения высот небесных светил, проводит астрономические наблюдения. К 1530 г. Коперник в основном заканчивает разработку своего учения и системе мира, но лишь в 1543 г. Коперник решается напечатать рукопись с полным изложением гелиоцентрической системы.

(1 июня 1796 г. - 24 августа 1832 г.)
Никола Леонард Сади Карно – французский инженер и ученый. Сади Карно – сын Л. Н. Карно (1753-1823), ученого, государственного деятеля, участника французской буржуазной революции. В 1814 г. С. Карно окончил Политехническую школу в Париже и затем поступил на службу в инженерные войска. В 1827 г. он был произведен в капитаны и вскоре вышел в отставку. Будучи на военной службе, он много времени уделял научной работе. Карно написал единственный научный труд «Размышления о движущей силе огня и о машинах, способных развивать эту силу», изданный в 1824 г. Труд Карно не имел сначала большого распространения, и только к 1834 г. другой французский ученый Клапейрон (1799-1864) обратил на него внимание. После смерти Карно его брат опубликовал записки Карно. В них была высказана мысль об эквивалентности теплоты и работы.

Рудольф Юлиус Эмануэль Клаузиус родился 2 января 1822 в Кёслине (ныне Кошалин, Польша) в семье пастора. Учился в частной школе, затем в гимназии. Окончил Берлинский университет (1848), где получил степень доктора философии. В 1850–1857 преподавал в Берлине и Цюрихе. Профессор университетов в Цюрихе, Вюрцбурге, Бонне. С 1884 – ректор Боннского университета. Клаузиус внес большой вклад в развитие молекулярно-кинетической теории газов. Он впервые применил здесь новый подход – так называемый метод средних величин (то, что теперь называется статистическими методами), объяснил с единых позиций такие разные явления, как внутреннее трение, теплопроводность, диффузия. Ввел понятие средней длины свободного пробега молекул и в 1860 вычислил ее величину, что в дальнейшем позволило оценить размер молекул. Обобщил уравнение газового состояния Ван-дер-Ваальса, выявил смысл уравнения, связывающего температуру плавления (или кипения) вещества с давлением (уравнение Клапейрона – Клаузиуса).

Помимо этого, Клаузиус разработал теорию поляризации диэлектриков, из которой независимо от О.Моссотти вывел соотношение между диэлектрической проницаемостью и поляризуемостью (формула Клаузиуса – Моссотти).

Клаузиус является одним из основателей термодинамики и кинетической теории газов. Он сформулировал первый и второй газовые законы термодинамики. В 1876 г. им была написана работа «Механическая теория тепла».


Людвиг Больцман – австрийский физик, основатель статистической механики и молекулярно-кинетической теории.

После окончания гимназии Больцман поступил в Венский университет. Уже в 1866 г. он в возрасте 22 лет получил докторскую степень и занял должность приват-доцента в Венском университете. С 1869 г. Больцман – профессор в университетах Граца, Вены Мюнхена, Лейпцига. Последние годы он провел в Вене.

Большинство работ Больцмана относятся к теоретическим исследованиям в области молекулярной физики. Главной его заслугой явилось статистическое истолкование второго закона термодинамики. Эти работы Больцмана не были оценены при его жизни и только после его смерти они получили признание.

Больцману принадлежит также ряд работ по механике, электродинамике и другим разделам теоретической физики. По своим взглядам он был убежденным материалистом и резким идейным противником Маха и Оствальда, пытавшимся на основе искаженного представления достижений науки обосновать идеалистические философские учения.


(30 сентября 1870 г. - 17 апреля 1942 г.)
Жан Батист Перрен – французский физик. После окончания Высшей нормальной школы в Париже Перрен сначала работал в этой же школе, а затем в Парижском университете.

С 1910 г. он – профессор. В 1940 г. после оккупации Франции войсками фашистской Германии он уехал в США.

Перрену принадлежат работы, относящиеся к различным областям физики, и в частности, работы по изучению броуновского движения.

Перрен был почетным членом Академии наук СССР (с 1929 г.), Нобелевским лауреатом (1926 г.)

(14 августа 1777 г. - 9 марта 1851 г.)

Эрстед Ханс Кристиан – датский физик.

Эрстед родился в г. Рудкёбинге, расположенном на острове Лангеланн, в семье аптекаря. В 1797 г. он окончил Копенгагенский университет. В 1800 г. Эрстед становится адъюнктом и в 1806 г. – профессором Копенгагенского университета. Основные работы Эрстеда посвящены физике, химии, философии. Обнаружение отклонения магнитной стрелки под действием электрического тока явилось важнейшей научной заслугой Эрстеда. Его сообщение о своих опытах вызвало ряд последующих важнейших исследований (Ампера, Фарадея и др.) по электродинамике, которые привели к построению теории и практическому использованию электричества.

Эрстед организовал в Дании Общество по распространению естественно-научных знаний и Политехни-ческую школу в Копенгагене, первым директором которой он был. В течение 36 лет он исполнял должность секретаря Датского королевского общества (академии наук Дании).

С 1830 г. Эрстед был почетным членом Петербургской Академии наук.



Джеймс Клерк Максвелл - английский физик, создатель теории электромагнитного поля, один из основоположников статистической физики. Максвелл родился в Эдинбурге (Шотландия) в дворянской семье. В 1847 г. Максвелл поступил в Эдинбургский университет. В 1850г. Максвелл переходит учиться в Кембриджский университет. После окончания Тринити-колледжа этого университета (в 1854 г.) он стал преподавать в нем. В 1856 г Максвелл становится профессором физики университета в Шотландии, зачем Лондонского университета и с 1871 г. Максвелл - профессор Кембриджского университета. В последнем он основал известную Кавендишскую лабораторию и был первым ее директором. Первая из основных работ Максвелла по электродинамике называлась «О фарадеевых силовых линиях» (1855-1856). В ней молодым ученым был сформулирован метод и, по существу, намечена программа исследования электромагнитных явлений на основе представления о близкодействии. Последующая разработка теории электромагнитного поля была дана Максвеллом в работах: «О физических силовых линиях» (1861-1862), «Динамическая теория электромагнитного поля» (1864), «Трактат об электричестве и магнетизме» (1873).

Разработка теории электромагнетизма - важнейшая из широкого круга проблем, которые получили первоклассное решение в трудах Максвелла.

(22 марта 1868 г. - 19 декабря 1953 г.)
Роберт Эндрус Милликен (1868-1953) – американский физик. Милликен окончил колледж в штате Огайо. Получил докторскую степень в Колумбийском университете. В 1895-1896 гг. работал в Германии в Берлинском и Геттингенском университетах, затем с 1896 г. в Чикагском университете и других учреждениях.

Милликен осуществил очень точное измерение заряда электрона с помощью разработанного им метода.

Милликен провел также проверку уравнения фотоэффекта. Ему принадлежит ряд работ по спектроскопии, космическим лучам и т. д. Он является лауреатом Нобелевской премии.

Эрнест Резерфорд – английский физик, основоположник ядерной физики. Родился в семье небогатого фермера в Новой Зеландии. В 1894 г. Э. Резерфорд окончил Новозеландский университет. В 1895-1898 гг.работал под руководством Дж.Дж.Томсона в Кавендишской лаборатории. В 1898 -1907 гг. Резерфорд – профессор Мак-Гиллского университета в Монреале (Канада), в 1907-1919 гг. – профессор Манчестерского университета, а с 1919 г. – профессор Кембриджского университета и директор Кавендишской лаборатории. С 1903 г.- член Лондонского королевского общества, а в период с 1925 г. по 1930 г. – его президент. Резерфорд почетный член Академии наук СССР и академии наук большинства стран мира. Он лауреат Нобелевской премии по химии (1908 г.) Основные работы Резерфорда относятся к физике атома и атомного ядра. Он первым обнаружил (в 1899 г.), что излучение радиоактивных элементов имеет сложный состав; двум компонентам этого излучения он дал название α- и β-лучей. В 1903 г. Резерфорд совместно с Ф. Содди создал теорию радиоактивного распада элементов. На основе экспериментов с рассеянием α- частиц Он сделал вывод о существовании в центре химического элемента положительно заряженного ядра. В 1919 г. Резерфорд первым обнаружил возможность превращения атомов нерадиоактивных элементов в атомы других элементов под влиянием ударов α- частиц. В 1920 г. Резерфорд предсказал, а в 1933 г. совместно с М. Олифантом экспериментально доказал справедливость закона взаимосвязи массы и энергии.

(12 (24) марта 1891 г. - 25 января 1951 г.)

Сергей Иванович Вавилов – советский физик, академик АН СССР, с 1945 по 1951 г. – президент АН СССР. С.И. Вавилов родился в Москве, в семье торгового служащего. Среднее образование получил в коммерческом училище. С 1909 по 1914 г. учился в Московском университете, где вошел в состав группы физиков под руководством П. Н. Лебедева. В лаборатории Лебедева Вавилов выполнил свое первое научное исследование по оптике, за что позднее получил золотую медаль. После окончания университета Вавилов был призван в армию и отправлен на фронт, где пробыл до 1918 г. С 1918 по 1932 г. Вавилов работал в Московском университете (с 1929 – профессор) и одновременно (с 1918 по 1930 г.) заведовал отделением физической оптики в Институте физики и биофизики, а с 1932 г. он – директор Физического института АН СССР. Основные научные труды Вавилова посвящены вопросам физической оптики. В 1938 г. Вавилов был избран депутатом ВС РСФСР, а в 1946 г.- депутатом ВС СССР. Имя Вавилова присвоено Институту физических проблем АН СССР в Москве и Государственному оптическому институту в Санкт-Петербурге. В 1951 г. учреждена золотая медаль имени С.И. Вавилова, присуждаемая ежегодно за выдающиеся работы в области физики.
ч. 1

Фарадей (Faraday) Майкл (22 сентября 1791, Лондон - 25 августа 1867, там же), английский физик, основоположник современной концепции поля в электродинамике, автор ряда фундаментальных открытий, в том числе закона электромагнитной индукции, законов электролиза, явления вращения плоскости поляризации света в магнитном поле, один из первых исследователей воздействия магнитного поля на среды.

Детство и юность

Фарадей родился в семье кузнеца. Кузнецом был и его старший брат Роберт, всячески поощрявший тягу Майкла к знаниям и на первых порах поддерживавший его материально. Мать Фарадея, трудолюбивая, мудрая, хотя и необразованная женщина, дожила до времени, когда ее сын добился успехов и признания, и по праву гордилась им.

Скромные доходы семьи не позволили Майклу окончить даже среднюю школу, и тринадцати лет он поступил учеником к владельцу книжной лавки и переплетной мастерской, где ему предстояло пробыть 10 лет. Все это время Фарадей упорно занимался самообразованием - прочитал всю доступную ему литературу по физике и химии, повторял в устроенной им домашней лаборатории опыты, описанные в книгах, посещал по вечерам и воскресеньям частные лекции по физике и астрономии. Деньги (по шиллингу на оплату каждой лекции) он получал от брата. На лекциях у Фарадея появились новые знакомые, которым он писал много писем, чтобы выработать ясный и лаконичный стиль изложения; он также старался овладеть приемами ораторского искусства.

Начало работы в Королевском институте

Один из клиентов переплетной мастерской, член Лондонского королевского общества Дено, заметив интерес Фарадея к науке, помог ему попасть на лекции выдающегося физика и химика Г. Дэви в Королевском институте. Фарадей тщательно записал и переплел четыре лекции и вместе с письмом послал их лектору. Этот "смелый и наивный шаг", по словам самого Фарадея, оказал на его судьбу решающее влияние.

В 1813 Дэви (не без некоторого колебания) пригласил Фарадея на освободившееся место ассистента в Королевский институт, а осенью того же года взял его в двухгодичную поездку по научным центрам Европы. Это путешествие имело для Фарадея большое значение: он вместе с Дэви посетил ряд лабораторий, познакомился с такими учеными, как А. Ампер, М. Шеврель, Ж. Л. Гей-Люссак, которые в свою очередь обратили внимание на блестящие способности молодого англичанина.

Первые самостоятельные исследования. Научные публикации

После возвращения в 1815 в Королевский институт Фарадей приступил к интенсивной работе, в которой все большее место занимали самостоятельные научные исследования. В 1816 он начал читать публичный курс лекций по физике и химии в Обществе для самообразования. В этом же году появляется и его первая печатная работа.

В 1821 в жизни Фарадея произошло несколько важных событий. Он получил место надзирателя за зданием и лабораториями Королевского института (т. е. технического смотрителя) и опубликовал две значительные научные работы (о вращениях тока вокруг магнита и магнита вокруг тока и о сжижении хлора). В том же году он женился и, как показала вся его дальнейшая жизнь, был весьма счастлив в браке.

В период до 1821 Фарадей опубликовал около 40 научных работ, главным образом по химии. Постепенно его экспериментальные исследования все более переключались в область электромагнетизма. После открытия в 1820 Х. Эрстедом магнитного действия электрического тока Фарадея увлекла проблема связи между электричеством и магнетизмом.

В 1822 в его лабораторном дневнике появилась запись: "Превратить магнетизм в электричество". Однако Фарадей продолжал и другие исследования, в том числе в области химии. Так, в 1824 ему первому удалось получить хлор в жидком состоянии.

Избрание в Королевское общество. Профессура

В 1824 Фарадей был избран членом Королевского общества, несмотря на активное противодействие Дэви, отношения с которым стали у Фарадея к тому времени довольно сложными, хотя Дэви любил повторять, что из всех его открытий самым значительным было "открытие Фарадея". Последний также воздавал должное Дэви, называя его "великим человеком".

Спустя год после избрания в Королевское общество Фарадея назначают директором лаборатории Королевского института, а в 1827 он получает в этом институте профессорскую кафедру.

Закон электромагнитной индукции. Электролиз

В 1830, несмотря на стесненное материальное положение, Фарадей решительно отказывается от всех побочных занятий, выполнения любых научно-технических исследований и других работ (кроме чтения лекций по химии), чтобы целиком посвятить себя научным изысканиям.

Вскоре он добивается блестящего успеха: 29 августа 1831 открывает явление электромагнитной индукции - явление порождения электрического поля переменным магнитным полем. Десять дней напряженнейшей работы позволили Фарадею всесторонне и полностью исследовать это явление, которое без преувеличения можно назвать фундаментом, в частности, всей современной электротехники. Но сам Фарадей не интересовался прикладными возможностями своих открытий, он стремился к главному - исследованию законов Природы.

Открытие электромагнитной индукции принесло Фарадею известность. Но он по-прежнему был очень стеснен в средствах, так что его друзья были вынуждены хлопотать о предоставлении ему пожизненной правительственной пенсии. Эти хлопоты увенчались успехом лишь в 1835.

Когда же у Фарадея возникло впечатление, что министр казначейства относится к этой пенсии как к подачке ученому, он направил министру письмо, в котором с достоинством отказался от всякой пенсии. Министру пришлось просить извинения у Фарадея.

В 1833-34 Фарадей изучал прохождение электрических токов через растворы кислот, солей и щелочей, что привело его к открытию законов электролиза. Эти законы (Фарадея законы) впоследствии сыграли важную роль в становлении представлений о дискретных носителях электрического заряда.

До конца 1830-х гг. Фарадей выполнил обширные исследования электрических явлений в диэлектриках.

Болезнь Фарадея. Последние экспериментальные работы

Постоянное огромное умственное напряжение подорвало здоровье Фарадея и вынудило его в 1840 прервать на пять лет научную работу. Вернувшись к ней вновь, Фарадей в 1848 открыл явление вращения плоскости поляризации света, распространяющегося в прозрачных веществах вдоль линий напряженности магнитного поля (Фарадея эффект).

По-видимому, сам Фарадей (взволнованно написавший, что он "намагнитил свет и осветил магнитную силовую линию") придавал этому открытию большое значение. И действительно, оно явилось первым указанием на существование связи между оптикой и электромагнетизмом. Убежденность в глубокой взаимосвязи электрических, магнитных, оптических и других физических и химических явлений стала основой всего научного миропонимания Фарадея.

Другие экспериментальные работы Фарадея этого времени посвящены исследованиям магнитных свойств различных сред. В частности, в 1845 им были открыты явления диамагнетизма и парамагнетизма.

В 1855 болезнь вновь заставила Фарадея прервать работу. Он значительно ослабел, стал катастрофически терять память. Ему приходилось записывать в лабораторный журнал все, вплоть до того, куда и что он положил перед уходом из лаборатории, что он уже сделал и что собирался делать далее. Чтобы продолжать работать, он должен был отказаться от многого, в том числе и от посещения друзей; последнее, от чего он отказался, были лекции для детей.

Значение научных трудов

Даже далеко не полный перечень того, что внес в науку Фарадей, дает представление об исключительном значении его трудов. В этом перечне, однако, отсутствует то главное, что составляет громадную научную заслугу Фарадея: он первым создал полевую концепцию в учении об электричестве и магнетизме.

Если до него господствовало представление о прямом и мгновенном взаимодействии зарядов и токов через пустое пространство, то Фарадей последовательно развивал идею о том, что активным материальным переносчиком этого взаимодействия является электромагнитное поле.

Об этом прекрасно написал Д. К. Максвелл , ставший его последователем, развивший далее его учение и облекший представления об электромагнитном поле в четкую математическую форму: "Фарадей своим мысленным оком видел силовые линии, принизывающие все пространство. Там, где математики видели центры напряжения сил дальнодействия, Фарадей видел промежуточный агент. Где они не видели ничего, кроме расстояния, удовлетворяясь тем, что находили закон распределения сил, действующих на электрические флюиды, Фарадей искал сущность реальных явлений, протекающих в среде".

Точка зрения на электродинамику с позиций концепции поля, основоположником которой был Фарадей, стала неотъемлемой частью современной науки. Труды Фарадея ознаменовали наступление новой эры в физике.

Страница 2

В октябре Фарадей обратился с пространным письмом к своему другу Стодарту. В этом письме он изложил все обстоятельства крайне досадного инцидента s негодованием и горячностью несправедливо обвиненного человека и по пунктам разбил все возведенные на нег обвинения. Стодарт, как и большинство друзей Фарадея считал, что вокруг этого дела не следует создавать лишнего шума. Фарадей сперва был склонен последовать совету своих друзей, но затем отверг все эти сове ты и решил апеллировать непосредственно к благородству и лояльности самого Волластона. «Я полагаю сэр, - писал он Волластону, прося о свидании, - что поврежу себе в ваших глазах, прибегнув к наиболее простым и прямым средствам для выяснения возникшей недоразумения.»…

Переговоры с Волластоном принесли Фарадею, полное удовлетворение, так как первый признал, что ничего предосудительного в действиях молодого ученого не было. Считая, что недоразумение с Волластоном совершенно забыто, Фарадей спокойно продолжал свои исследования, сосредоточив все внимание на вопросах, связанных с явлениями электромагнитного вращения. Особенно интересовала его попытка заставить проволоку по которой течет электрический ток, вращаться под действием земного магнетизма. После ряда опытов старания Фарадея увенчались успехом. Как и во всех случаях, когда он ставил перед собой какую-либо задачу, oн страстно и упорно добивался цели. И когда, наконец ему в последних числах декабря 1821 г. удалось получить желаемый результат, он с чисто детским восторгом радовался своему успеху. Шурин Фарадея, Джорж Барнард, присутствовавший как раз в это время в лаборатории, рассказывал, что когда проволока начала вра­щаться, то Фарадей взволнованно воскликнул: «Ты ви­дишь, ты видишь, ты видишь, Джордж!». «Никогда, - подчеркивает Джордж, - не забуду я энтузиазма, вы­ражавшегося на его лице, и блеска его глаз».

Этот эксперимент оказался исключитеольно важным для практического применения электричества. Фарадей впервые осуществил непррывное превращение электрической энергии в механическую. Именно 1821 г. надо считать годом возникновения электродвигателя., как устройства, превращающего энергию электрическую в механическую. Возникновение электродвигателей связано с именем Фарадея: он выяснил их физические основы тем самым раскрыл неограниченные просторы для технического творчества многочисленных изобретателей, создавших современные электрические машины.

В литературе принято делить научное творчество Фарадея на три периода.

Второй, это-период знаменитых «Опытных исследований по электричеству», т. е. время с 1830-го по 1840-3 год, когда вследствие расстройства здоровья Фарадея его научное творчество приостанавливается на четыре года.

И, наконец, третий период начинается с 1844 г. когда Фарадей, оправившись от недуга, снова приступил к работе.

Самым знаменательным событием первого периоды было несомненно, открытие явления электромагнитного вращения. Но за первые пятнадцать лет своей научной деятельности Фарадей обогатил науку и рядом другие открытий и ценных исследованию. К концу 1830 г. опубликовал до 60 оригинальных работ, не считая множества заметок и мелких сообщений.

В 1825 г. Фарадей был назначен директором лаборатории Королевского института.

Но важнейшим этапом достижения связанные с именем Фарадея относятся ко второму периоду его деятельности, связанному с « Опытными исследованиями по электричеству»

Как уже было сказано, мысль об обратимости явления Эрстеда зародилась у Фарадея еще в 1822 г С тех пор он, не переставая, думал над этой проблемой. Говорили, что он носил в жилетном кармане маленький магнит, который должен был напомнить ему о поставлена себе задаче - превратить магнетизм в электричество.

Хотя 1822- 1831 гг. были полны кипучей научной деятельности в самых различных областях, тем не менее записной книжке Фарадея мы тогда же находим описание опытов «для получения электричества от магнетизма», правда, неизменно заканчивавшихся выводом: «безрезультатно».

Плодотворные результаты были достигнуты только в 1831 г. Летом этого года Фарадей стал усиленно обдумывать свою идею. Он решил отстраниться от всяко другой работы и все внимание посвятить новым экспериментам. В июле, получил снова предложение от Совета Королевского общества заняться оптическим стеклом, он ответил отказом и целиком занялся, как он это отмечал в лабораторном журнале, «опытом для получения электричества от магнетизма».

Уже 29 августа 1831 г. Фарадей, экспериментируя с прототипом современного трансформатора (рис. 1), наблюдал появление индуктированного электрического тока.

Решающим днем опытов было 17 октября 1831 г. Опыты этого дня завершились получением электрическо­го тока от приближения магнита к проводнику (прово­локе). Это и было собственно центральным моментом во всей серии опытов: задача «превратить магнетизм в электричество» была разрешена.

Все неудачи, которые Фарадей терпел до этого вре­мени, объясняются тем, что в опытах и магнит и про­водник оставались в состоянии покоя. Как говорит Сильванус Томпсон (один из биографов Фарадея), маг­нит мог лежать близ проводника преспокойно сто лет и никакого действия не произвел бы. «Цилиндрический по­лосовой магнит, - гласит запись этого дня, - диаметром в три четверти дюйма и длиной в восемь с половиной дюймов одним концом был вставлен в конец цилиндра с соленоидом (Рис. 2), затем он был быстро внесен

Рис. 2. Соленоид и цилиндрический магнит (схематическое изображение)

внутрь во всю свою длину, и стрелка гальванометра от­клонилась; далее он был удален, и стрелка снова откло­нилась, но в противоположном направлении. Этот эф­фект повторялся каждый раз, когда магнит вносили или удаляли. Из этого следует, что волна электричества со­здавалась от простого приближения магнита, а не от его нахождения in situ2».

Из дальнейшего наибольший интерес представляют опыты, относящиеся к 28 октября 1831 г. Эта дата мо­жет считаться днем рождения прототипа современных динамо-машин - так называемого «медного диска Фарадея. В его записной книжке отмечено, что он «заставил медный диск вращаться между полюсами подковообразного магнита Королевского общества. Ось и край диска были соединены с гальванометром. Стрелка отклонялась, как только диск начинал вращаться».

Исключительно напряженная работа была проделана менее, чем в полтора месяца. Верный своему методу начав работу, довести ее до конца и опубликовать, Фарадей привел в систему все полученные им данные и составил доклад для Королевского общества, который и был им прочитан 24 ноября 1831 г. Этот доклад послу-

Фиг. 3. Медный диск Фарадея (собственноручный рисунок Фарадея).

жил основанием первой серии знаменитых «Опытных ис­следований по электричеству».

Заметим что в первых двух опытах о гальванометре не упоминается, появление индуцированного тока Фарадей наблюдал по отклонению магнитной стрелки, а уже в опыте с медным диском «ось и край диска были соединены с гальванометром»

Гальванометр Фарадей изготовил сам, вот так его описал сам автор.

«гальванометр был изготовлен примитивно, но все же был достаточно чувствителен в отношении своих показаний. Провод был медный с шелковой изоляцией, и содержал 16 или 18 витков. Две швейные иглы были намагничены и пропущены через высушенную соломинку параллельно одна другой. Эта система была подвешена на волокне из сученого шелка, так чтобы нижняя игла находилась внутри витков многократно намотанного провода, а верхняя под ними. Последняя являлась более сильным магнитом и давала устройству ориентировку относительно земли. На рис. 4 показано направление провода и игл, когда был помещен в магнитный меридиан. Для удобства дальнейших ссылок концы проводов отмечены буквами А и В, буквы S и N обозначают южный и северный концы иглы, когда на нее действует только земной магнетизм. Коней иглы N является, следовательно, отмеченным полюсом. Весь прибор был защищен стеклянной банкой; его положение и расстояние относительно большого магнита было такое же, как раньше.










ФАРАДЕЙ ПРЕДЛОЖИЛ И ДРУГИЕ РАЗНОВИДНОСТИ ОПЫТА: Замыкание (размыкание) цепи катушки с током Регулирование реостатом силы тока в цепи катушки Внесение (извлечение) катушки с током из катушки, замкнутой на гальванометр Вращение замкнутого контура в магнитном поле


Что же объединяет все эти опыты? Что можно сказать о магнитном потоке, как числе линий магнитной индукции, пронизывающих поверхность, ограниченную контуром? При внесении (изъятии) магнита? При замыкании (размыкании) цепи? При изменении силы тока реостатом? При внесении (изъятии) катушки с током? При вращении контура в магнитном поле? изменяется




ЯВЛЕНИЕ ЭЛЕКТРОМАГНИТНОЙ ИНДУКЦИИ Заключается в возникновении электрического тока в замкнутом контуре при любом изменении магнитного потока через поверхность, ограниченную этим контуром Отличие полученного тока от известного нам ранее заключается в том, что для его получения не нужен источник тока



Литература и интернет-ресурсы: А.В.Перышкин, Е.М.Гутник «Физика 9» M_Faraday_Th_Phillips_oil_1842.jpghttp://upload.wikimedia.org/wikipedia/commons/thumb/8/88/M_Faraday_Th_Phillips_oil_1842.jpg/220px- M_Faraday_Th_Phillips_oil_1842.jpg - слайд 1 -слайд слайд слайд 4 -слайд 5 -слайд 6 -слайд 7 -слайд 7 -слайд 7 -слайд 8 -слайд 9 -слайд слайд слайд 11

Реферат

по дисциплине «Физика»

Тема: «Открытие явления электромагнитной индукции»

Выполнил:

Студент группы 13103/1

Санкт-Петербург

2. Опыты Фарадея. 3

3. Практическое применение явления электромагнитной индукции. 9

4. Список использованной литературы.. 12

Электромагнитная индукция - явление возникновения электрического тока в замкнутом контуре при изменении магнитного потока, проходящего через него. Электромагнитная индукция была открыта Майклом Фарадеем 29 августа 1831 года. Он обнаружил, что электродвижущая сила, возникающая в замкнутом проводящем контуре, пропорциональна скорости изменения магнитного потока через поверхность, ограниченную этим контуром. Величина электродвижущей силы (ЭДС) не зависит от того, что является причиной изменения потока - изменение самого магнитного поля или движение контура (или его части) в магнитном поле. Электрический ток, вызванный этой ЭДС, называется индукционным током.

В 1820 г. Ганс Христиан Эрстед показал, что протекающий по цепи электрический ток вызывает отклонение магнитной стрелки. Если электрический ток порождает магнетизм, то с магнетизмом должно быть связано появление электрического тока. Эта мысль захватила английского ученого М. Фарадея. «Превратить магнетизм в электричество», - записал он в 1822 г. в своём дневнике .

Майкл Фарадей

Майкл Фарадей (1791-1867) родился в Лондоне, в одной из беднейших его частей. Его отец был кузнецом, а мать - дочерью земледельца-арендатора. Когда Фарадей достиг школьного возраста, его отдали в начальную школу. Курс, пройденный Фарадеем здесь, был очень узок и ограничивался только обучением чтению, письму и началам счета.

В нескольких шагах от дома, в котором жила семья Фарадеев, находилась книжная лавка, бывшая вместе с тем и переплетным заведением. Сюда-то и попал Фарадей, закончив курс начальной школы, когда возник вопрос о выборе профессии для него. Майклу в это время минуло только 13 лет. Уже в юношеском возрасте, когда Фарадей только что начинал свое самообразование, он стремился опираться исключительно только на факты и проверять сообщения других собственными опытами.



Эти стремления доминировали в нем всю жизнь как основные черты его научной деятельности Физические и химические опыты Фарадей стал проделывать еще мальчиком при первом же знакомстве с физикой и химией. Однажды Майкл посетил одну из лекций Гэмфри Дэви, великого английского физика. Фарадей сделал подробную запись лекции, переплел ее и отослал Дэви. Тот был настолько поражен, что предложил Фарадею работать с ним в качестве секретаря. Вскоре Дэви отправился в путешествие по Европе и взял с собой Фарадея. За два года они посетили крупнейшие европейские университеты.

Вернувшись в Лондон в 1815 году, Фарадей начал работать ассистентом в одной из лабораторий Королевского института в Лондоне. В то время это была одна из лучших физических лабораторий мира. С 1816 по 1818 год Фарадей напечатал ряд мелких заметок и небольших мемуаров по химии. К 1818 году относится первая работа Фарадея по физике.

Опираясь на опыты своих предшественников и скомбинировав несколько собственных опытов, к сентябрю 1821 года Майкл напечатал «Историю успехов электромагнетизма». Уже в это время он составил вполне правильное понятие о сущности явления отклонения магнитной стрелки под действием тока.

Добившись этого успеха, Фарадей на целых десять лет оставляет занятия в области электричества, посвятив себя исследованию целого ряда предметов иного рода. В 1823 году Фарадеем было произведено одно из важнейших открытий в области физики - он впервые добился сжижения газа, и вместе с тем установил простой, но действительный метод обращения газов в жидкость. В 1824 году Фарадей сделал несколько открытий в области физики. Среди прочего он установил тот факт, что свет влияет на цвет стекла, изменяя его. В следующем году Фарадей снова обращается от физики к химии, и результатом его работ в этой области является открытие бензина и серно-нафталиновой кислоты.

В 1831 году Фарадей опубликовал трактат «Об особого рода оптическом обмане», послуживший основанием прекрасного и любопытного оптического снаряда, именуемого «хромотропом». В том же году вышел еще один трактат ученого «О вибрирующих пластинках». Многие из этих работ могли сами по себе обессмертить имя их автора. Но наиболее важными из научных работ Фарадея являются его исследования в области электромагнетизма и электрической индукции.

Опыты Фарадея

Одержимый идеями о неразрывной связи и взаимодействии сил природы, Фарадей пытался доказать, что точно так же, как с помощью электричества Ампер мог создавать магниты, так же и с помощью магнитов можно создавать электричество.

Логика его была проста: механическая работа легко переходит в тепло; наоборот, тепло можно преобразовать в механическую работу (скажем, в паровой машине). Вообще, среди сил природы чаще всего случается следующее соотношение: если А рождает Б, то и Б рождает А.

Если с помощью электричества Ампер получал магниты, то, по-видимому, возможно «получить электричество из обычного магнетизма». Такую же задачу поставили перед собой Араго и Ампер в Париже, Колладон – в Женеве.

Строго говоря, важный отдел физики, трактующий явления электромагнетизма и индукционного электричества, и имеющий в настоящее время такое громадное значение для техники, был создан Фарадеем из ничего. К тому времени, когда Фарадей окончательно посвятил себя исследованиям в области электричества, было установлено, что при обыкновенных условиях достаточно присутствия наэлектризованного тела, чтобы влияние его возбудило электричество во всяком другом теле. Вместе с тем было известно, что проволока, по которой проходит ток и которая также представляет собою наэлектризованное тело, не оказывает никакого влияния на помещенные рядом другие проволоки.

Отчего зависело это исключение? Вот вопрос, который заинтересовал Фарадея и решение которого привело его к важнейшим открытиям в области индукционного электричества. Фарадей ставит множество опытов, ведет педантичные записи. Каждому небольшому исследованию он посвящает параграф в лабораторных записях (изданы в Лондоне полностью в 1931 году под названием «Дневник Фарадея»). О работоспособности Фарадея говорит хотя бы тот факт, что последний параграф «Дневника» помечен номером 16041. Блестящее мастерство Фарадея-экспериментатора, одержимость, четкая философская позиция не могли не быте вознаграждены, но ожидать результата пришлось долгих одиннадцать лет.

Кроме интуитивной убежденности во всеобщей связи явлений, его, собственно, в поисках «электричества из магнетизма» ничто не поддерживало. К тому же он, как его учитель Дэви, больше полагался на свои опыты, чем на мысленные построения. Дэви учил его:

– Хороший эксперимент имеет больше ценности, чем глубокомыслие такого гения, как Ньютон.

И тем не менее именно Фарадею суждены были великие открытия. Великий реалист, он стихийно рвал путы эмпирики, некогда навязанные ему Дэви, и в эти минуты его осеняло великое прозрение – он приобретал способность к глубочайшим обобщениям.

Первый проблеск удачи появился лишь 29 августа 1831 года. В этот день Фарадей испытывал в лаборатории несложное устройство: железное кольцо диаметром около шести дюймов, обмотанное двумя кусками изолированной проволоки. Когда Фарадей подключил к зажимам одной обмотки батарею, его ассистент, артиллерийский сержант Андерсен, увидел, как дернулась стрелка гальванометра, подсоединенного к другой обмотке.

Дернулась и успокоилась, хотя постоянный ток продолжал течь по первой обмотке. Фарадей тщательно просмотрел все детали этой простой установки – все было в порядке.

Но стрелка гальванометра упорно стояла на нуле. С досады Фарадей решил выключить ток, и тут случилось чудо – во время размыкания цепи стрелка гальванометра опять качнулась и опять застыла на нуле!

Гальванометр, оставаясь совершенно спокойным во все время прохождения тока, приходит в колебание при самом замыкании цепи и при размыкании ее. Оказалось, что в тот момент, когда в первую проволоку пропускается ток, а также когда это пропускание прекращается, во второй проволоке также возбуждается ток, имеющий в первом случае противоположное направление с первым током и одинаковое с ним во втором случае и продолжающийся всего одно мгновение.

Вот тут-то и открылись Фарадею во всей ясности великие идеи Ампера – связь между электрическим током и магнетизмом. Ведь первая обмотка, в которую он подавал ток, сразу становилась магнитом. Если рассматривать ее как магнит, то эксперимент 29 августа показал, что магнетизм как будто бы рождает электричество. Только две вещи оставались в этом случае странными: почему всплеск электричества при включении электромагнита стал быстро сходить на нет? И более того, почему всплеск появляется при выключении магнита?

На следующий день, 30 августа, – новая серия экспериментов. Эффект ясно выражен, но тем не менее абсолютно непонятен.

Фарадей чувствует, что открытие где-то рядом.

«Я теперь опять занимаюсь электромагнетизмом и думаю, что напал на удачную вещь, но не могу еще утверждать это. Очень может быть, что после всех моих трудов я в конце концов вытащу водоросли вместо рыбы».

К следующему утру, 24 сентября, Фарадей подготовил много различных устройств, в которых основными элементами были уже не обмотки с электрическим током, а постоянные магниты. И эффект тоже существовал! Стрелка отклонялась и сразу же устремлялась на место. Это легкое движение происходило при самых неожиданных манипуляциях с магнитом, иной раз, казалось, случайно.

Следующий эксперимент – 1 октября. Фарадей решает вернуться к самому началу – к двум обмоткам: одной с током, другой – подсоединенной к гальванометру. Различие с первым экспериментом – отсутствие стального кольца – сердечника. Всплеск почти незаметен. Результат тривиален. Ясно, что магнит без сердечника гораздо слабее магнита с сердечником. Поэтому и эффект выражен слабее.

Фарадей разочарован. Две недели он не подходит к приборам, размышляя о причинах неудачи.

«Я взял цилиндрический магнитный брусок (3/4 дюйма в диаметре и 8 1/4 дюйма длиной) и ввел один его конец внутрь спирали из медной проволоки (220 футов длиной), соединенной с гальванометром. Потом я быстрым движением втолкнул магнит внутрь спирали на всю его длину, и стрелка гальванометра испытала толчок. Затем я так же быстро вытащил магнит из спирали, и стрелка опять качнулась, но в противоположную сторону. Эти качания стрелки повторялись всякий раз, как магнит вталкивался или выталкивался».

Секрет – в движении магнита! Импульс электричества определяется не положением магнита, а движением!

Это значит, что «электрическая волна возникает только при движении магнита, а не в силу свойств, присущих ему в покое».

Рис. 2. Опыт Фарадея с катушкой

Эта идея необыкновенно плодотворна. Если движение магнита относительно проводника создает электричество, то, видимо, и движение проводника относительно магнита должно рождать электричество! Причем эта «электрическая волна» не исчезнет до тех пор, пока будет продолжаться взаимное перемещение проводника и магнита. Значит, есть возможность создать генератор электрического тока, действующий сколь угодно долго, лишь бы продолжалось взаимное движение проволоки и магнита!

28 октября Фарадей установил между полюсами подковообразного магнита вращающийся медный диск, с которого при помощи скользящих контактов (один на оси, другой – на периферии диска) можно было снимать электрическое напряжение. Это был первый электрический генератор, созданный руками человека. Так был найден новый источник электрической энергии, помимо ранее известных (трения и химических процессов), - индукция, и новый вид этой энергии - индукционное электричество.

Опыты, аналогичные фарадеевским, как уже говорилось, проводились во Франции и в Швейцарии. Профессор Женевской академии Колладон был искушенным экспериментатором (он, например, произвел на Женевском озере точные измерения скорости звука в воде). Может быть, опасаясь сотрясения приборов, он, как и Фарадей, по возможности удалил гальванометр от остальной установки. Многие утверждали, что Колладон наблюдал те же мимолетные движения стрелки, что и Фарадей, но, ожидая более стабильного, продолжительного эффекта, не придал этим «случайным» всплескам должного значения...

Действительно, мнение большинства ученых того времени сводилось к тому, что обратный эффект «создания электричества из магнетизма» должен, по-видимому, иметь столь же стационарный характер, как и «прямой» эффект – «образование магнетизма» за счет электрического тока. Неожиданная «мимолетность» этого эффекта сбила с толку многих, в том числе Колладона, и эти многие поплатились за свою предубежденность .

Продолжая свои опыты, Фарадей открыл далее, что достаточно простого приближения проволоки, закрученной в замкнутую кривую, к другой, по которой идет гальванический ток, чтобы в нейтральной проволоке возбудить индуктивный ток направления, обратного гальваническому току, что удаление нейтральной проволоки снова возбуждает в ней индуктивный ток уже одинакового направления с гальваническим, идущим по неподвижной проволоке, и что, наконец, эти индуктивные токи возбуждаются только во время приближения и удаления проволоки к проводнику гальванического тока, а без этого движения токи не возбуждаются, как бы близко друг к другу проволоки ни находились.

Таким образом, было открыто новое явление, аналогичное вышеописанному явлению индукции при замыкании и прекращении гальванического тока. Эти открытия вызвали в свою очередь новые. Если можно вызвать индуктивный ток замыканием и прекращением гальванического тока, то не получится ли тот же результат от намагничивания и размагничивания железа?

Работы Эрстеда и Ампера установили уже родство магнетизма и электричества. Было известно, что железо делается магнитом, когда вокруг него обмотана изолированная проволока и по последней проходит гальванический ток, и что магнитные свойства этого железа прекращаются, как только прекращается ток.

Исходя из этого, Фарадей придумал такого рода опыт: вокруг железного кольца были обмотаны две изолированные проволоки; причем одна проволока была обмотана вокруг одной половины кольца, а другая - вокруг другой. Через одну проволоку пропускался ток от гальванической батареи, а концы другой были соединены с гальванометром. И вот, когда ток замыкался или прекращался и когда, следовательно, железное кольцо намагничивалось или размагничивалось, стрелка гальванометра быстро колебалась и затем быстро останавливалась, то есть в нейтральной проволоке возбуждались все те же мгновенные индуктивные токи - на этот раз: уже под влиянием магнетизма.

Рис. 3. Опыт Фарадея с железным кольцом

Таким образом, здесь впервые магнетизм был превращен в электричество. Получив эти результаты, Фарадей решил разнообразить свои опыты. Вместо железного кольца он стал употреблять железную полосу. Вместо возбуждения в железе магнетизма гальваническим током он намагничивал железо прикосновением его к постоянному стальному магниту. Результат получался тот же: в проволоке, обматывавшей железо, всегда возбуждался ток в момент намагничивания и размагничивания железа. Затем Фарадей вносил в проволочную спираль стальной магнит - приближение и удаление последнего вызывало в проволоке индукционные токи. Словом, магнетизм, в смысле возбуждения индукционных токов, действовал совершенно так же, как и гальванический ток.

В то время физиков усиленно занимало одно загадочное явление, открытое в 1824 году Араго и не находившее объяснения, несмотря на то, что этого объяснения усиленно искали такие выдающиеся ученые того времени, как сам Араго, Ампер, Пуассон, Бабэдж и Гершель. Дело состояло в следующем. Магнитная стрелка, свободно висящая, быстро приходит в состояние покоя, если под нее подвести круг из немагнитного металла; если затем круг привести во вращательное движение, магнитная стрелка начинает двигаться за ним.

В спокойном состоянии нельзя было открыть ни малейшего притяжения или отталкивания между кругом и стрелкой, между тем как тот же круг, находившийся в движении, тянул за собою не только легкую стрелку, но и тяжелый магнит. Это поистине чудесное явление казалось ученым того времени таинственной загадкой, чем-то выходящим за пределы естественного. Фарадей, исходя из своих вышеизложенных данных, сделал предположение, что кружок немагнитного металла, под влиянием магнита, во время вращения обегается индуктивными токами, которые оказывают воздействие на магнитную стрелку и влекут ее за магнитом. И действительно, введя край кружка между полюсами большого подковообразного магнита и соединив проволокою центр и край кружка с гальванометром, Фарадей получил при вращении кружка постоянный электрический ток.

Вслед за тем Фарадей остановился на другом вызывавшем тогда общее любопытство явлении. Как известно, если посыпать на магнит железных опилок, они группируются по определенным линиям, называемым магнитными кривыми. Фарадей, обратив внимание на это явление, дал основы в 1831 году магнитным кривым название «линий магнитной силы», вошедшее затем во всеобщее употребление. Изучение этих «линий» привело Фарадея к новому открытию, оказалось, что для возбуждения индуктивных токов приближение и удаление источника от магнитного полюса необязательны. Для возбуждения токов достаточно пересечь известным образом линии магнитной силы.

Рис. 4. «Линии магнитной силы»

Дальнейшие работы Фарадея в упомянутом направлении приобретали, с современной ему точки зрения, характер чего-то совершенно чудесного. В начале 1832 года он демонстрировал прибор, в котором возбуждались индуктивные токи без помощи магнита или гальванического тока. Прибор состоял из железной полосы, помещенной в проволочной катушке. Прибор этот при обыкновенных условиях не давал ни малейшего признака появления в нем токов; но лишь только ему давалось направление, соответствующее направлению магнитной стрелки, в проволоке возбуждался ток.

Затем Фарадей давал положение магнитной стрелки одной катушке и потом вводил в нее железную полосу: ток снова возбуждался. Причиною, вызывавшею в этих случаях ток, был земной магнетизм, вызывавший индуктивные токи подобно обыкновенному магниту или гальваническому току. Чтобы нагляднее показать и доказать это, Фарадей предпринял еще один опыт, вполне подтвердивший его соображения.

Он рассуждал, что если круг из немагнитного металла, например, из меди, вращаясь в положении, при котором он пересекает линии магнитной силы соседнего магнита, дает индуктивный ток, то тот же круг, вращаясь в отсутствие магнита, но в положении, при котором круг будет пересекать линии земного магнетизма, тоже должен дать индуктивный ток. И действительно, медный круг, вращаемый в горизонтальной плоскости, дал индуктивный ток, производивший заметное отклонение стрелки гальванометра. Ряд исследований в области электрической индукции Фарадей закончил открытием, сделанным в 1835 году, «индуктирующего влияния тока на самого себя».

Он выяснил, что при замыкании или размыкании гальванического тока в самой проволоке, служащей проводником для этого тока, возбуждаются моментальные индуктивные токи.

Русский физик Эмиль Христофорович Ленц (1804-1861) дал правило для определения направления индукционного тока. «Индукционный ток всегда направлен так, что создаваемое им магнитное поле затрудняет или тормозит вызывающее индукцию движение, - отмечает А.А. Коробко-Стефанов в своей статье об электромагнитной индукции. - Например, при приближении катушки к магниту возникающий индукционный ток имеет такое направление, что созданное им магнитное поле будет противоположно магнитному полю магнита. В результате между катушкой и магнитом возникают силы отталкивания. Правило Ленца вытекает из закона сохранения и превращения энергии. Если бы индукционные токи ускоряли вызывающее их движение, то создавалась бы работа из ничего. Катушка сама собой после небольшого толчка устремлялась бы навстречу магниту, и одновременно индукционный ток выделял бы в ней теплоту. В действительности же индукционный ток создается за счет работы по сближению магнита и катушки.

Рис. 5. Правило Ленца

Почему возникает индукционный ток? Глубокое объяснение явления электромагнитной индукции дал английский физик Джемс Клерк Максвелл - творец законченной математической теории электромагнитного поля. Чтобы лучше понять суть дела, рассмотрим очень простой опыт. Пусть катушка состоит из одного витка проволоки и пронизывается переменным магнитным полем, перпендикулярным к плоскости витка. В катушке, естественно, возникает индукционный ток. Исключительно смело и неожиданно истолковал этот эксперимент Максвелл.

При изменении магнитного поля в пространстве, по мысли Максвелла, возникает процесс, для которого присутствие проволочного витка не имеет никакого значения. Главное здесь - возникновение замкнутых кольцевых линий электрического поля, охватывающих изменяющееся магнитное поле. Под действием возникающего электрического поля приходят в движение электроны, и в витке возникает электрический ток. Виток - это просто прибор, позволяющий обнаружить электрическое поле. Сущность же явления электромагнитной индукции в том, что переменное магнитное поле всегда порождает в окружающем пространстве электрическое поле с замкнутыми силовыми линиями. Такое поле называется вихревым».

Изыскания в области индукции, производимой земным магнетизмом, дали Фарадею возможность высказать еще в 1832 году идею телеграфа, которая затем и легла в основу этого изобретения. А вообще открытие электромагнитной индукции недаром относят к наиболее выдающимся открытиям XIX века - на этом явлении основана работа миллионов электродвигателей и генераторов электрического тока во всем мире...

Практическое применение явления электромагнитной индукции

1. Радиовещание

Переменное магнитное поле, возбуждаемое изменяющимся током, создаёт в окружающем пространстве электрическое поле, которое в свою очередь возбуждает магнитное поле, и т.д. Взаимно порождая друг друга, эти поля образуют единое переменное электромагнитное поле - электромагнитную волну. Возникнув в том месте, где есть провод с током, электромагнитное поле распространяется в пространстве со скоростью света -300000 км/с.

Рис. 6. Радио

2. Магнитотерапия

В спектре частот разные места занимают радиоволны, свет, рентгеновское излучение и другие электромагнитные излучения. Их обычно характеризуют непрерывно связанными между собой электрическими и магнитными полями.

3. Синхрофазотроны

В настоящее время под магнитным полем понимают особую форму материи состоящую из заряженных частиц. В современной физике пучки заряженных частиц используют для проникновения в глубь атомов с целью их изучения. Сила, с которой действует магнитное поле на движущуюся заряженную частицу, называется силой Лоренца.

4. Расходомеры-счетчики

Метод основан на применении закона Фарадея для проводника в магнитном поле: в потоке электропроводящей жидкости, движущейся в магнитном поле наводится ЭДС, пропорциональная скорости потока, преобразуемая электронной частью в электрический аналоговый/цифровой сигнал.

5. Генератор постоянного тока

В режиме генератора якорь машины вращается под действием внешнего момента. Между полюсами статора имеется постоянный магнитный поток, пронизывающий якорь. Проводники обмотки якоря движутся в магнитном поле и, следовательно, в них индуктируется ЭДС, направление которой можно определить по правилу "правой руки". При этом на одной щетке возникает положительный потенциал относительно второй. Если к зажимам генератора подключить нагрузку, то в ней пойдет ток.

6. Трансформаторы

Трансформаторы широко применяются при передаче электрической энергии на большие расстояния, распределении ее между приемниками, а также в различных выпрямительных, усилительных, сигнализационных и других устройствах.

Преобразование энергии в трансформаторе осуществляется переменным магнитным полем. Трансформатор представляет собой сердечник из тонких стальных изолированных одна от другой пластин, на котором помещаются две, а иногда и больше обмоток (катушек) из изолированного провода. Обмотка, к которой присоединяется источник электрической энергии переменного тока, называется первичной обмоткой, остальные обмотки - вторичными.

Если во вторичной обмотке трансформатора намотано в три раза больше витков, чем в первичной, то магнитное поле, созданное в сердечнике первичной обмоткой, пересекая витки вторичной обмотки, создаст в ней в три раза больше напряжение.

Применив трансформатор с обратным соотношением витков, можно так же легко и просто получить пониженное напряжение .

Список использованной литературы

1. [Электронный ресурс]. Электромагнитная индукция.

< https://ru.wikipedia.org/>

2. [Электронный ресурс].Фарадей. Открытие электромагнитной индукции.

< http://www.e-reading.club/chapter.php/26178/78/Karcev_-_Maksvell.html >

3. [Электронный ресурс]. Открытие электромагнитной индукции.

4. [Электронный ресурс]. Практическое применение явления электромагнитной индукции.