Системы заземления TN-C-S, TN-C, TN-C, TT, IT. Заземление при централизованном электроснабжении Системы электроснабжения tn c

  • 25.06.2019

Всем известны системы энергоснабжения с напряжением до 1000 вольт, на уровне конечного потребителя. Они бывают всего двух видов:

  • трехфазная (три фазы и рабочий нуль), где напряжение между фазами составляет 380 вольт, а между каждой фазой и нулем - 220 вольт.
  • однофазная (одна из трех фаз с общего ввода на объект, и рабочий нуль), напряжение между каждой фазой и нулем составляет 220 вольт.

А вот с системами безопасности, ситуация гораздо сложнее. Для организации искусственного заземления, ГОСТ предусматривает 5 систем: TN-C, TN-S, TN-C-S, TT, IT.

Правила устройства электроустановок (ПУЭ) определяют условия, на основании которых проектировщики выбирают систему заземления объекта. Она отражается в проектной документации, и не может быть изменена после сдачи объекта в эксплуатацию.

В большинстве случаев, применяется система заземления TN, которая предусматривает обязательное заземление нейтрали источника питания. При этом открытые токоведущие части конечных электроустановок, могут быть соединены с нейтралью источника питания различными способами.

Каждая из предложенных систем искусственного заземления имеет свои преимущества и недостатки. При этом, любая из них направлена на решение вопросов безопасной эксплуатации электроустановок, и нахождения людей на объекте.

Условные обозначения

Для лучшего понимания материала, разберем принятые условные обозначения:

  • L1, L2, L3 - проводник, на который подключена фаза источника питания. В однофазных системах, обозначается буквой L.
  • N - рабочий нуль источника питания (нулевой проводник).
  • PE - защитный нуль: он же заземляющий проводник, соединенный с заземлителем.
  • PEN - проводник, совмещающий в себе рабочий и защитный нули.

TN-S

Самая безопасная система, это TN-S.

Силовой кабель для соединения потребителя электроэнергии с источником питания, выполнен по пятижильной схеме: три фазы (L1, L2, L3), рабочий нуль (N) и рабочее заземление (PE). Объединение нуля и «земли» происходит на ближайшей подстанции. При аварийной ситуации, если рабочий нуль отгорит, корпуса электроустановок все равно остаются присоединенными к заземлению. Защита от поражения электротоком обеспечивается независимо от состояния нулевого провода. Соответственно, внутренняя разводка к потребителям выполняется трехжильным проводом (для однофазного подключения), либо тем же пятижильным (при наличии трехфазных электроустановок: например, электропечей или отопительных систем).

На вводных щитках в каждом помещении, монтируются по две раздельные клеммные колодки: рабочий нуль и защитная земля.

Причем после «земляной» колодки нельзя устанавливать коммутационные устройства: выключатели, защитные автоматы. По всей длине, заземляющий проводник от заземлителя до электроустановки, не должен иметь размыкающих устройств.

Вы спросите: «а как же розетка?» При извлечении из нее вилки, линия заземления действительно размыкается. Но при этом электроустановка полностью обесточивается, и перестает быть опасной.

TN-C

Системой заземления TN-S сегодня оборудуются все современные жилые и нежилые объекты. К сожалению, такая схема применяется только на объектах, введенных в строй не раньше, чем 15–20 лет назад. Подавляющее большинство жилого фонда, построенного во времена СССР, оборудованы системой TN-C. Это не значит, что все эти объекты построены с нарушениями СНиП. Просто в те времена, стандарты (включая ПУЭ) были иными.

В идеале, необходимо переоснастить все существующие сети до стандарта TN-S. Но это потребует огромных капиталовложений. К тому-же, прокладка дополнительных линий «земли» от питающих подстанций не всегда возможна технически. А значит, в некоторых местах придется менять всю сеть силовых кабелей.

Заземление TN-C не обеспечивает полной безопасности по следующей причине:

«Земля» и рабочий нуль представляют собой одну линию, которая расположена в силовом кабеле от источника питания, до потребителя. Заземлитель (контур заземления, физически соединенный с грунтом), расположен в непосредственной близости от питающей подстанции. Такой способ организации заземления называется глухозаземленной нейтралью. Силовой кабель состоит из четырех жил: три фазы (L1, L2, L3), и рабочий нуль, совмещенный с рабочим заземлением (PEN).

Поскольку рабочий нуль находится под нагрузкой (через него протекает активный электрический ток), он находится в так называемой зоне риска. Нередки случаи, когда от перегрева этот проводник просто отгорал. Что происходит при этом с конечными потребителями, оставим за скобками - напряжение может скакнуть до 600 вольт. Главная опасность в том, что все электроустановки в этом случае теряют защитное заземление. Прикоснувшись к корпусу, на котором может оказаться потенциал фазы, человек гарантированно будет поражен электротоком. Особую опасность при такой аварии, представляет одновременное прикосновение к электроустановке, находящейся под напряжением, и металлическим конструкциям, имеющим физический контакт с грунтом: системы отопления, водопровода, арматура в стенах. Даже влажный цементный пол, соединенный с арматурой в стяжке, может стать причиной трагедии.

В многоквартирных домах, и других объектах, оборудованных системой TN-C, вообще отсутствует защитное заземление в привычном понимании. Все знают, как выглядят розетки советского образца: в них нет контактов заземления. Даже если владельцы производят замену на трех контактные современные розетки, клемма защитного заземления остается невостребованной: ее просто не к чему подключить.

По этой причине, на объектах, оснащенных заземлением TN-C, в помещениях с повышенной влажностью (санузлы, бани, прачечные), запрещено использовать незаземленные электроприборы. Если вы устанавливаете бойлер, или стиральную машину - подводить к ней заземление (или организовывать систему дополнительного уравнивания потенциалов) на основе рабочей нейтрали, запрещено!

Необходимо организовать заземлитель (полноценный контур, имеющий физический контакт с грунтом). Причем параметры такого заземлителя должны соответствовать требованиям Правил устройства электроустановок.

Металлический уголок длиной 50 см, забитый в палисадник у подъезда, заземлителем не является!

Затем в квартиру заводится заземляющий проводник (сечением не менее 2.5 мм², и не имеющий разъединителей на всей протяженности), который соединяется непосредственно с электроустановкой. Разумеется, необходимо установить щиток или клеммную колодку заземления, завести на нее розетки и корпуса опасных электроприборов.

TN-C-S

Для минимизации проблем со схемой TN-C, введена система заземления TN C S. Это некий компромисс, переходный вариант от старой C к современной S.

Как она устроена, и в чем отличие от TN-S?

В произвольном месте, глухозаземленная нейтраль объединяется с защитным заземлением. Точнее, от рабочего нуля выполняется ответвление. Как правило, такая точка организуется на входе силового кабеля в объект.

На вводном щитке потребителя (обычно, это общий ввод на объекте: многоквартирный дом, офисное здание и прочее) имеются уже две шины: рабочий нуль, и защитное заземление. Далее к потребителям идут привычные и безопасные силовые кабели: трехжильный к однофазным электроустановкам, и пятижильный к трехфазным.

В каждый вводной щиток квартиры, или обособленного помещения внутри объекта, линии защитного заземления и нуля заходят уже в разделенном виде. Для конечного потребителя, система заземления по схеме TN-C-S выглядит, как обычная и безопасная TN-S. На самом деле, уровень безопасности далеко не 100%.

Почему система TN-C-S не обеспечивает полную защиту от поражения электротоком? Слабое место находится на участке от питающей подстанции до точки объединения нуля и защитного заземления. Если на пути от подстанции, где глухозаземленная нейтраль соединена с заземлителем, до вводного распределительного устройства на объекте, произойдет разрыв линии PEN, все потребители останутся без контура заземления.

При проведении капитального ремонта на объектах жилого фонда советской постройки, обязательно организуется система заземления. Для экономии средств, выполняется она по схеме TN-C-S. В лучшем случае, при объединении линии PEN с вновь проложенной шиной защитного заземления, производится электрическое подключение к реальному контуру заземления. В большинстве домов присутствует основная система уравнивания потенциалов, имеющая надежный контакт с грунтом. Но зачастую, чтобы упростить себе задачу, бригады ремонтников просто устанавливают перемычку между новой шиной заземления и рабочей нейтралью, внутри вводного распределительного устройства.

Совет. При заключении договора с исполнителем работ по капитальному ремонту, необходимо заранее оговаривать вопрос заземления.

Как быть, если ваш дом подключен по системе TN-C, а до ближайшего капремонта еще много лет? Организовывать индивидуальное заземление в квартире, или объединяться хотя бы с соседями по подъезду. Иначе использование современных электроприборов (бойлеры, электрические духовки, стиральные машинки и пр.) станет источником повышенной опасности.

Есть горе мастера, немного разбирающиеся в электротехнике, но не понимающие ответственности за нарушение ПУЭ. Зачастую, вместо организации контура заземления по ГОСТу, шина защитного заземления соединяется с металлическими элементами инфраструктуры. В лучшем случае, со стояками холодной или горячей воды, в худшем - с системой отопления.

Действительно, при строительстве дома, эти трубы соединялись с контуром основной системы уравнивания потенциалов. Изначально был организован физический контакт с «землей». Но в процессе эксплуатации (особенно если вашему дому несколько десятков лет), целые участки трубопроводов заменены на полипропилен. Разумеется, ни о каком заземлении в этом случае не может быть и речи.

Организовав такое подключение, владелец квартиры пребывает в ложной уверенности, что у него с безопасностью полный порядок. Мало того, при появлении на корпусе электроустановки опасного потенциала (достаточно напряжения более 42 вольт), опасности подвергаются все соседи.

Вывод

Единственный безопасный способ - установить недалеко от подъезда контур заземления (согласно ПУЭ), и завести на объект надежный проводник.

После чего, можно развести полноценное заземление по квартирам. Разумеется, лучше поручить эту работу квалифицированным специалистам.

Видео по теме

Система заземления определяет конфигурацию использующейся электросети. В буквенном обозначении указывается тип использования проводов (земля, ноль), их совмещение либо отдельное прохождение, вариант заземления потребителя, нейтрали. Тип заземления электроустановки (открытых ее частей) указывает вторая буква международной классификации. Характер заземления самого источника обозначает первая буква аббревиатуры. Две системы IT, TT не имеют подсистем, третья TN делится на три подкатегории – C-S, S, C. Латинскими символами в этих системах обозначены:

Первая буква:

  • T – Глухозаземленная нейтраль
  • I - Изолированная нейтраль
  • Вторая буква:

  • T – Непосредственное присоединение открытых проводящих частей к земле (защитное заземление )
  • N - Непосредственное присоединение открытых проводящих частей к глухозаземленной нейтрали источника питания (защитное зануление )
  • Последующие буквы:

  • S – Нулевой рабочий и защитный проводник работают раздельно на всем протяжении системы
  • C – Нулевой рабочий и защитный проводники объединены на всем протяжении системы
  • C – S – Нулевой рабочий и защитный проводники объединены на части протяжении системы
  • Согласно ГОСТ, нулевые проводники обозначаются маркировками:

  • совмещенные защитный, рабочий нулевой проводники – PEN
  • нулевой защитный проводник – PE
  • нулевой рабочий проводники – N
  • Принцип работы заземления

    При нормальной работе системы электроустановки ее отдельные элементы не должны находиться под напряжением для безопасности пользователей. В жилом здании такими частями установок являются:

  • корпуса бытовых приборов (металлические)
  • электрощиты, силовые шкафы
  • корпуса электрооборудования
  • Для обеспечения безопасности их соединяют с контуром заземления, возникший потенциал не причиняет вреда человеку, уходит в землю, обладающую значительной массой. Незначительное воздействие электрического тока при этом пользователь почувствует, однако, оно будет безопасно для организма.


    Типовые квартиры, частные коттеджи, построенные недавно, имеют заземление во всех розетках. В старом жилом фонде эти системы безопасности в электропроводке отсутствуют. Современные вилки бытовой аппаратуры, электроприборов так же имеют три контакта, поэтому, целесообразен перевод старых домов (там где это технически возможно) c системы питания TN-C на систему питания TN-C-S.

    Дома подключаются к промышленным источникам тока (трансформаторные подстанции), имеющим заземлители в обязательном порядке. Современные нормы СНиП так же обязывают застройщика обеспечить заземлением ВРУ (распределительные устройства ввода). На практике этими устройствами являются распределительные щиты, от которых необходимо обеспечить качественное соединение с вилками бытовых приборов. Причем, использовать для этих целей трубопроводы инженерных систем в большинстве случаев не удастся в силу следующих причин:

  • по трубам транспортируются воспламеняющиеся жидкости
  • современная разводка выполняется полимерными материалами, не проводящими электричество
  • Согласно европейским стандартам, к домам могут подходить три провода однофазной сети:

  • фазный проводник L
  • рабочий ноль N
  • защитный нулевой проводник РЕ
  • В трехфазной сети вместо одного проводника L присутствует три фазы L3, L2, L1. Это простейшая TN-S схема, обеспечивающая надежное заземление, в каждую квартиру приходит трехжильный провод с желто-зеленым проводником, подключенным в этажном щитке к РЕ проводу.

    В схеме TN-C-S разводка по квартирам осуществляется аналогичным образом, однако, при вводе в дом ноль дополнительно заземляется.

    TN система

    При «глухом» заземлении нейтрали источника с одновременным присоединением его открытых элементов к ней же защитными нулевыми проводами система именуется TN. В этом случае нейтраль присоединяется к заземляющему контуру возле подстанции, а, не к дугогосящему реактору.

    Подсистема TN-C

    Подсистема TN-C использует объединенные в общий провод нулевые проводники (защитный + рабочий), что обеспечивает простую схему, экономию материалов проводки. Недостатками являются:
  • отсутствие PE проводника
  • розетки жилого дома остаются без защитного заземления
  • В этом варианте вместо заземления, обеспечивающего безопасность касания к корпусу прибора под напряжением, используется защита обнуления – срабатывание автомата при резком увеличении тока в цепи (КЗ). Рабочий нулевой проводник в этой схеме обозначается PEN, присутствует в схеме TN-C. Слабым местом схемы является участок от квартиры до ввода в дом – нарушение целостности цепи (отгорание провода, подключение автомата, предохранителя в разрыв) гарантирует фазу на корпусе, несчастный случай при случайном контакте.

    Система заземления этого типа вынуждает дополнительно использовать схемы зануления. При КЗ (случайное попадаете фазы на корпус электроприбора) срабатывает автомат, происходит отключение энергии. Технология энергоснабжения присутствует в большинстве жилищ вторичного фонда, постепенно заменяется более совершенными схемами. Уравнивание потенциалов в этом случае запрещено в санузлах.

    Подсистема TN-S

    В подсистеме TN-S улучшена безопасность зданий, оборудования, пользователей за счет разделения защитного, рабочего проводников по всей длине. Однако, это приводит к увеличению бюджета строительства, так как, необходима прокладка трехжильного либо пятижильного кабеля от ТП для однофазных, трехфазных сетей, соответственно.

    Подсистема TN-C-S

    Подсистема TN-C-S является гибридной, в ней нулевые проводники (защитный + рабочий) объединены на расстоянии от подстанции до ввода в здание, расщепляются внутри него с использованием повторного заземления PE провода, N провода. Эта система заземления является универсальной – рекомендована при обустройстве новостроек, применяется для модернизации эксплуатируемых TN-C подсистем несложным улучшением подъездных стояков.

    ТТ система

    Отличительной особенностью схемы защиты открытых токопроводящих частей источника, которую использует система заземления TT, является независимая от заземлителя нейтраль. Система разрешена в России недавно, применяется лишь в случаях невозможности обеспечения электробезопасности домов, павильонов, мобильных зданий с помощью TN системы. Это обусловлено необходимостью повторного заземления высокого качества (обычно, модульно-штыревые конструкции в комбинации с УЗО), к контуру которого распределительный щит подключается непосредственно на объекте.

    IT схема

    Особенность схемы заземления IT состоит в заземленных открытых токопроводящих частях источника электроэнергии. Нейтраль в этих схемах безопасности либо заземлена через высокое сопротивление приборов, либо изолирована от земли, что позволяет свести к минимуму электромагнитные поля, наведенные токи. Схема оптимально подходит для учреждений медицины, лабораторий, использующих высокоточную аппаратуру. Не рекомендуется для жилых домов.

    Питающие сети системы TN имеют непосредственно присоединенную к земле точку. Открытые проводящие части электроустановки присоединяются к этой точке посредством нулевых защитных проводников.

    В зависимости от устройства нулевого рабочего(N) и нулевого защитного(PE) проводников различают следующие три типа системы TN:

    • система TN-C- функции нулевого рабочего и нулевого защитного проводников объединены в одном проводнике по всей сети;
    • система TN-C-S - функции нулевого рабочего и нулевого защитного проводников объединены в одном проводнике в части сети;
    • система TN-S - нулевой рабочий и нулевой защитный проводники работают раздельно по всей системе.

    Система заземления TN

    1- заземление нейтрали, 2- токопроводящие части

    В системе TN-C нулевой рабочий проводник - N объединен с нулевым защитным проводником - РЕ в один проводник – PEN.

    Система TN-C запрещена в новом строительстве, в цепях однофазного и постоянного тока. Это требование не распространяется на ответвления от ВЛ напряжением до 1 кВ к однофазным потребителям электроэнергии(ПУЭ 1.7.132).

    Система заземления TN-C-S

    В системе TN-C- S во вводном устройстве электроустановки совмещенный нулевой защитный и рабочий проводник - РЕN разделен на нулевой защитный - РЕ и нулевой рабочий - N проводники.

    У электроустановок с типом системы заземления TN-C-S нейтраль питающей линии является совмещенным нулевым защитным- PE и нулевым рабочим - N проводником (PEN). В системе TN-C-S все открытые проводящие части эктроустановки имеют непосредственную связь с точкой заземления трансформаторной подстанции.

    Обозначения для электроустановок напряжением до 1 кВ

    /1.7.3./ Для электроустановок напряжением до 1 кВ приняты следующие обозначения:

    • система TN - система, в которой нейтраль источника питания глухо заземлена, а открытые проводящие части электроустановки присоединены к глухозаземленной нейтрали источника посредством нулевых защитных проводников;
    • система TN-С - система TN, в которой нулевой защитный и нулевой рабочий проводники совмещены в одном проводнике на всем ее протяжении;
    • система TN-S - система TN, в которой нулевой защитный и нулевой рабочий проводники разделены на всем ее протяжении;
    • система TN-C-S - система TN, в которой функции нулевого защитного и нулевого рабочего проводников совмещены в одном проводнике в какой-то ее части, начиная от источника питания;
    • система IT - система, в которой нейтраль источника питания изолирована от земли или заземлена через приборы или устройства, имеющие большое сопротивление, а открытые проводящие части электроустановки заземлены;
    • система ТТ - система, в которой нейтраль источника питания глухо заземлена, а открытые проводящие части электроустановки заземлены при помощи заземляющего устройства, электрически независимого от глухозаземленной нейтрали источника.

    Первая буква - состояние нейтрали источника питания относительно земли:
    Т - заземленная нейтраль;
    I - изолированная нейтраль.
    Вторая-буква - состояние открытых проводящих частей относительно земли:
    Т - открытые проводящие части заземлены, независимо от отношения к земле нейтрали источника питания или какой-либо точки питающей сети;
    N - открытые проводящие части присоединены к глухозаземленной нейтрали источника питания.
    Последующие (после N) буквы - совмещение в одном проводнике или разделение функций нулевого рабочего и нулевого защитного проводников:
    S - нулевой рабочий (N) и нулевой защитный (РЕ) проводники разделены;
    С - функции нулевого защитного и нулевого рабочего проводников совмещены в одном проводнике (PEN-проводник);

    Существует несколько вариантов работы электрических сетей в зависимости от их системы заземления. Кратко охарактеризуем имеющиеся системы заземления электрических сетей класса напряжения до и выше 1000 В.

    Сети класса напряжения до 1000 В

    Система TN-C

    В электрической сети данной конфигурации нейтральный вывод питающего силового трансформатора глухо заземлен , то есть электрически соединен с заземляющим контуром на трансформаторной подстанции. На всем протяжении от подстанции к потребителю нулевой и защитный проводник объединены в один общий – так называемый .

    Данная сеть предусматривает «зануление» электроприборов - присоединение нулевого и защитного проводника к совмещенному проводнику PEN. Данная сеть является устаревшей и реализуется только в промышленности и в уличном освещении.

    Зануление электроприборов в быту запрещено из-за опасности появления опасного потенциала на зануленных корпусах, поэтому такая сеть в старых постройках эксплуатируется исключительно в качестве двухпроводной – используется только нулевой и фазный проводники.

    Данная сеть отличается от предыдущей тем, что совмещенный проводник PEN разделяется в определенной точке, как правило, после входа в здание - на нулевой проводник N и защитный заземляющий проводник PE.

    Сеть конфигурации TN-C-S наиболее распространенная в наше время. Данная сеть является одной из рекомендуемых систем и может быть реализована на новых объектах.

    Система заземления TN-С:


    1 - заземлитель нейтрали (средней точки) источника питания, 2 - открытые проводящие части, N - нулевой рабочий проводник - нулевой рабочий (нейтральный) проводник, PE - защитный проводник - защитный проводник (заземляющий проводник, нулевой защитный проводник, защитный проводник системы уравнивания потенциалов), PEN - совмещенный нулевой защитный и нулевой рабочий проводники - совмещенный нулевой защитный и нулевой рабочий проводники.

    Конфигурация данной электрической сети отличается от предыдущих тем, что предусматривает разделение совмещенного проводника еще на питающей подстанции, на всем протяжении линии нулевой и заземляющий проводники разделены.

    Данная система применяется при строительстве новых объектов и является наиболее предпочтительной из всех имеющихся. Но в связи с более высокой стоимостью реализации (необходимостью прокладки отдельного защитного проводника), часто все же отдается предпочтение сети конфигурации TN-C-S.

    Система заземления TN-S:



    Система TT

    В данном случае также имеет глухое заземление, но электропроводка конечного потребителя заземляется от индивидуального заземляющего контура, не имеющего электрической связи с заземленной нейтралью трансформатора.

    В основном это сети TN-C, в которых не предусмотрено заземление в принципе, а также сети TN-C-S, которые не удовлетворяют требованиям ПУЭ относительно механической прочности совмещенного проводника, а также наличия его повторных заземлений.

    Система заземления TT:




    1 - заземлитель нейтрали (средней точки) источника питания, 2 - открытые проводящие части, 3 - заземлитель открытых проводящих частей, N - нулевой рабочий проводник - нулевой рабочий (нейтральный) проводник, PE - защитный проводник - защитный проводник (заземляющий проводник, нулевой защитный проводник, защитный проводник системы уравнивания потенциалов).

    Нейтрали силовых трансформаторов в сети данной конфигурации не заземлены, то есть, изолированы от заземляющего контура подстации. Защитный заземляющий проводник может подключаться к заземляющему контуру на подстанции либо непосредственно у потребителя к имеющемуся заземляющему контуру.

    Система заземления IT:


    1 - сопротивление заземления нейтрали источника питания (если имеется), 2 - заземлитель, 3 - открытые проводящие части, 4 - заземляющее устройство, PE - защитный проводник - защитный проводник (заземляющий проводник, нулевой защитный проводник, защитный проводник системы уравнивания потенциалов).

    Данная система заземления применяется для электроснабжения объектов, к которым предъявляются особые требования относительно безопасности и надежности. Это помещения электроустановок электростанций, подстанций, опасных производств, в частности горнодобывающей промышленности, взрывоопасные помещения и др.

    Электроустановки и сети класса напряжения 6, 10 и 35 кВ работают в большинстве случаев . В связи с отсутствие заземления нейтрали замыкание одной из фаз на землю не является коротким замыканием и не отключается защитой.

    В случае наличия замыкания в сети данной конфигурации допускается ее непродолжительная работа, как правило, на время отыскания поврежденного участка и отделения его от сети. То есть при наличии замыкания в сети изолированной нейтралью потребители не теряют питание, а продолжают работать в прежнем режиме, за исключением поврежденного участка, в котором наблюдается неполнофазный режим – обрыв одной из фаз.

    Опасность данной сети заключается в том, что в случае однофазного замыкания происходит растекание токов на землю от точки падения провода на 8 м на открытом пространстве и 4 м в помещениях. Человек, попавший в зону действия растекания данных токов, будет смертельно поражен электрическим током.


    Нейтраль сетей 6 и 10 кВ может быть заземлена через и дугогасящие катушки, которые позволяют компенсировать токи замыкания на землю. Данная система заземления сетей применяется в случае наличия больших токов замыкания на землю, которые могут быть опасны для электрооборудования данных сетей. Такая система заземления электрических сетей называется резонансной либо компенсированной .

    Электрические сети класса напряжения 110 и 150кВ имеют эффективную систему заземления. При данной системе заземления большинство силовых трансформаторов электрической сети имеет глухое заземление нейтрали , а некоторые трансформаторы имеют нейтраль, разземленную через разрядники или ограничители перенапряжения . Выборочное разземление нейтралей позволяет снизить .


    В результате расчетов, выбирается, на каких подстанциях следует разземлить нейтрали трансформаторов, чтобы обеспечить максимально эффективную работу электрической сети. Разземление нейтралей через разрядники или ОПН выполняется для того, чтобы защитить обмотку силовых трансформаторов от .

    Сети класса напряжения 220- 750 кВ работают в режиме глухозаземленной нейтрали, то есть в таких сетях все выводы нейтральных обмоток силовых трансформаторов и автотрансформаторов имеют электрическое соединение с .

    Электроэнергия в наши дома и квартиры приходит по электрическим проводам воздушных или кабельных линий от трансформаторных подстанций. Конфигурация этих сетей оказывает существенное влияние на эксплуатационные характеристики системы и, особенно — безопасность людей и бытовых приборов.

    В электрических установках всегда существует техническая возможность повреждения оборудования, возникновения аварийных режимов, получения электротравм человеком. Правильная организация системы заземления позволяет снизить возможности проявления рисков, сохранить здоровье, исключить повреждения домашней техники.

    Причины использования системы заземления ТТ

    По своему назначению эта схема разработана для такого случая, когда высокую степень безопасности не могут обеспечить другие распространенные системы . Об этом очень четко говорит пункт ПУЭ 1.7.57.

    Чаще всего это связано с низким уровнем технического состояния линий электропередач, особенно использующих оголенные провода, расположенные на открытом воздухе и закрепленные на опорах. Они обычно монтируются по четырехпроводной схеме:

      тремя фазами подачи напряжения, смещенными по углу на 120 градусов между собой;

      одним общим нулем, выполняющим совмещенные функции PEN-проводника (рабочего и защитного нуля).

    Они приходят к потребителям от понижающей трансформаторной подстанции, как показано на фотографии ниже.

    В сельской местности подобные магистрали могут иметь большую протяженность. Не секрет, что провода иногда схлестываются или обрываются из-за плохого качества скруток, падения веток или целых деревьев, набросов, порывов ветра, образования наледи в мороз после мокрого снегопада и по многим другим причинам.

    При этом происходит довольно часто, поскольку он монтируется нижним проводом. А это причиняет много бед всем подключенным потребителям из-за возникновения перекосов напряжений. В такой схеме отсутствует защитный РЕ-проводник, связанный с заземляющим контуром трансформаторной подстанции.

    У кабельных линий вероятность обрыва нуля намного меньше потому что они расположены в закрытом грунте и лучше защищены от повреждения. Поэтому в них сразу реализуют наиболее безопасную систему заземления TN-S постепенно выполняют реконструкцию TN-C на TN-C-S. Потребители же, подключенные воздушными проводами, пока практически лишены такой возможности.

    Сейчас многие владельцы земельных участков затевают строительство дачных домов, предприниматели организуют торговлю в отдельных павильонах и киосках, производственные предприятия создают быстровозводимые бытовые помещения и мастерские или вообще используют отдельные вагончики, которые временно запитывают электроэнергией.

    Чаще всего подобные сооружения выполняются из хорошо проводящих электрический ток металлических листов либо имеют сырые стены с повышенной влажностью. Безопасность человека при нахождении в подобных условиях может обеспечить только система заземления, выполненная по схеме ТТ. Она специально рассчитана для работы в таких условиях, когда потенциал сети имеет высокую вероятность аварийного появления на токоведущих стенках или корпусах оборудования.

    Принципы построения схемы заземления по системе ТТ

    Главное требование безопасности в этой ситуации обеспечивается тем, что защитный РЕ-проводник создается и заземляется не на трансформаторной подстанции, а на самом объекте потребления электрической энергии без связи с рабочим N-проводником, подключенным к заземлителю питающего трансформатора. Эти нули не должны контактировать и объединяться даже в том случае, когда рядом смонтирован отдельный контур заземления.

    Таким способом полностью отделяются защитным РЕ-проводником все опасные токопроводящие поверхности зданий из металла и корпуса подключенных электроприборов от действующей системы питания электроэнергии.

    Внутри здания или строения монтируется защитный РЕ-проводник из прута или полоски металла, который служит в качестве шины для подключения всех опасных элементов, обладающих токопроводящими свойствами. С противоположной стороны этот защитный ноль соединяется с отдельным контуром заземления. Собранный таким методом РЕ-проводник объединяет все участки, имеющие риск появления опасного напряжения, в единую систему уравнивания потенциалов.

    Подключение опасных металлических конструкций к защитному нулю может выполняться многожильным гибким проводом повышенного сечения, маркируемого полосками желто-зеленого цвета.

    При этом еще раз заострим внимание на том, что категорически запрещается объединять элементы конструкций зданий и металлические корпуса электрических устройств с рабочим нулем N.

    Технические требования обеспечения безопасности в системе ТТ

    Из-за случайного нарушения изоляции электропроводки потенциал напряжения способен внезапно появиться в любом месте не подключенной, но токопроводящей части здания. Человек, прикоснувшийся к ней и земле, сразу оказывается под действием электрического тока.

    Автоматические выключатели, защищающие от сверхтоков и перегрузок, могут только косвенно использоваться для снятия напряжения в этом случае, поскольку часть тока пойдет минуя цепочку рабочего нуля, а сопротивление контура основного заземления должно иметь очень низкое значение.

    Чтобы обезопасить человека работой автоматических выключателей необходимо создать условие образования потенциала утечки на открытой токоведущей части не более 50 вольт относительно потенциала земли. На практике это выполнить сложно по ряду причин:

      высокой кратности токов коротких замыканий времятоковой характеристики, используемых конструкциями различных выключателей;

      большим сопротивлением контура заземления;

      сложностью технических алгоритмов для работы подобных устройств.

    Поэтому предпочтение в создании защитного отключения дается устройствам, реагирующим непосредственно на появление тока утечки, ответвляющегося от основного расчетного пути протекания нагрузки, через РЕ-проводник и локализацию его снятием напряжения с контролируемой схемы, что выполняют только УЗО или дифавтоматы.

    Исключить риски получения электрических травм при этом способе заземления можно только при условии комплексного внедрения четырех основных задач:

    1. правильная установка и эксплуатация защитных устройств типа УЗО или дифференциальных автоматов;

    2. поддержание рабочего нуля N в технически исправном состоянии;

    3. использование защитных устройств от перенапряжений в сети;

    4. правильная эксплуатация местного контура заземления.

    УЗО или дифавтоматы

    Практически все части электропроводки здания должны быть охвачены зоной защиты этих устройств от возникновения токов утечек. Причем, их уставка на срабатывание не должна превышать 30 миллиампер. Это обеспечит отключение напряжения с аварийного участка при пробое изоляции электропроводки, исключит случайный контакт человека со стихийно возникшим опасным потенциалом, защитит от получения электротравмы.

    Установка на вводном щите в дом противопожарного УЗО с уставкой в 100÷300 мА повышает уровень безопасности и обеспечивает введение второй степени селективности.

    Рабочий ноль N

    Чтобы правильно определяла токи утечек, необходимо создать ей для этого технические условия и исключить ошибки. А они возникают сразу при объединении цепей рабочего и защитного нулей. Поэтому рабочий ноль должен быть обязательно надежно отделен от защитного, а соединять их нельзя. (Третье напоминание!).

    Защита от перенапряжений в сети

    Возникновение электрических разрядов в атмосфере, связанные с образованием молний, носят случайный, стихийный характер. Они могут проявиться не только электрическим ударом в строение, но и попаданием в провода воздушной линии электропередач, что происходит довольно часто.

    Энергетики применяют меры защиты от подобных природных явлений, но они не всегда оказываются достаточно эффективными. Большая часть энергии ударившей молнии отводится от ЛЭП, но какая-то ее доля оказывает вредное воздействие на всех подключенных потребителей.

    Защититься от действия подобных всплесков завышенных напряжений, приходящих по питающей ВЛ, можно с помощью применения специальных устройства — либо импульсных устройств защиты от перенапряжений (УЗИП).

    Поддержание местного контура заземления в исправном состоянии

    Эта задача возлагается в первую очередь на владельца здания. Никто другой самостоятельно заниматься подобным вопросом не будет.

    Контур заземления зарыт своей большей частью в земле и таким способом спрятан от случайных механических повреждений. Однако, в почве постоянно находятся растворы различных кислот, щелочей, солей, которые вызывают окислительно-восстановительные химические реакции с металлическими деталями контура, образующими слой коррозии.

    За счет этого ухудшается проводимость металла в местах контакта с грунтом и увеличивается общее электрическое сопротивление контура. По его величине судят о технических возможностях заземления и его способностях проводить токи неисправностей на потенциал земли. Делается это проведением электрических замеров.

    Исправный контур заземления должен надежно пропустить к потенциалу земли ток уставки устройства защитного отключения, например, в 10 миллиампер и не исказить его. Только в этом случае УЗО правильно сработает, а система ТТ выполнит свое предназначение.

    Если сопротивление контура заземления будет выше нормы, то оно станет препятствовать прохождению тока, уменьшать его, чем может полностью исключить защитную функцию.

    Поскольку ток работы УЗО зависит от комплексного сопротивления цепи и состояния контура заземления, то существуют рекомендованные значения сопротивлений, которые позволяют обеспечивать гарантированное срабатывание защит. Эти величины показаны на картинке.

    Измерение этих параметров требует профессиональных знаний и точных специализированных приборов, работающих , но использующих усложненный алгоритм с дополнительной схемой подключения и строгую последовательность вычислений. Качественный измеритель сопротивления контура заземления результаты своей работы хранит в памяти и отображает на информационном табло.

    По ним с помощью компьютерных технологий строятся графики распределения электрических характеристик контура и анализируется его состояние.

    Поэтому подобными работами занимаются аккредитованные электротехнические лаборатории со специальным оборудованием.

    Замер сопротивления изоляции контура заземления необходимо делать сразу после ввода электроустановки в работу и периодически в процессе эксплуатации. Когда полученное значение выходит за пределы нормы, превышая ее, то создают дополнительные участки контура, подключаемые параллельно. Окончание правильности выполненных работ проверяют повторными измерениями.

    Опасные неисправности схемы в системе ТТ

    При рассмотрении технических требований обеспечения безопасности выделены четыре главные условия, решение которых должно выполняться комплексно. Нарушение любого пункта может привести к печальным последствиям во время пробоя сопротивления изоляции у фазного проводника.

    Например, попадание фазы на корпус электроприбора при неисправном УЗО или нарушенном контуре заземления приведет к электротравме. Установленные в схеме автоматические выключатели могут просто не сработать, поскольку ток через них будет меньше уставки.

    Частично исправить ситуацию в этом случае можно за счет:

      введения системы выравнивания потенциалов;

      подключения второй селективной ступени защиты УЗО на все здание, о которой уже упоминалось в рекомендациях.

    Поскольку вся организация работ по созданию заземления системы ТТ является сложной и требует точного исполнения технических условий, то выполнение подобного монтажа следует доверять только подготовленным работникам.