Свободный (молекулярный) азот. Соединения азота. Свойства азота

  • 14.10.2019

АЗОТ, N (лат. Nitrogenium * а. nitrogen; н. Stickstoff; ф. azote, nitrogene; и. nitrogeno), — химический элемент V группы периодической системы Менделеева, атомный номер 7, атомная масса 14,0067. Открыт в 1772 английским исследователем Д. Резерфордом.

Свойства азота

При обычных условиях азот — газ без цвета и запаха. Природный азот состоит из двух стабильных изотопов: 14 N (99,635%) и 15 N (0,365%). Молекула азота двухатомная; атомы связаны ковалентной тройной связью NN. Диаметр молекулы азота, определённый разными способами, 3,15-3,53 А. Молекула азота очень устойчива — энергия диссоциации 942,9 кДж/моль.

Молекулярный азот

Константы молекулярного азота: f плавления — 209,86°С, f кипения — 195,8°С; плотность газообразного азота 1,25 кг/ м 3 , жидкого — 808 кг/м 3 .

Характеристика азота

В твёрдом состоянии азот существует в двух модификациях: кубической а-форме с плотностью 1026,5 кг/м 3 и гексагональной b-форме с плотностью 879,2 кг/м 3 . Теплота плавления 25,5 кДж/кг, теплота испарения 200 кДж/кг. Поверхностное натяжение жидкого азота в контакте с воздухом 8,5.10 -3 Н/м; диэлектрическая проницаемость 1,000538. Растворимость азота в воде (см 3 на 100 мл Н 2 О): 2,33 (0°С), 1,42 (25°С) и 1,32 (60°С). Внешняя электронная оболочка атома азота состоит из 5 электронов. Степени окисления азота меняются от 5 (в N 2 О 5) до -3 (в NH 3).

Соединение азота

Азот при нормальных условиях может реагировать с соединениями переходных металлов (Ti, V, Mo и др.), образуя комплексы либо восстанавливаясь с образованием аммиака и гидразина. С такими активными металлами, как , азот взаимодействует при нагревании до сравнительно невысоких температур. С большинством других элементов азот реагирует при высокой температуре и в присутствии катализаторов. Хорошо изучены соединения азота с : N 2 О, NO, N 2 О 5 . С азот соединяется только при высокой температуре и в присутствии катализаторов; при этом образуется аммиак NH 3 . С галогенами азот непосредственно не взаимодействует; поэтому все галогениды азота получают только косвенным путём, например фтористый азот NF 3 — при взаимодействии с аммиаком. С серой также не происходит непосредственного соединения азота. При взаимодействии раскалённого с азотом образуется циан (CN) 2 . При действии на обычный азот электрических разрядов, а также при электрических разрядах в воздухе может образоваться активный азот, представляющий собой смесь молекул и атомов азота, обладающих повышенным запасом энергии. Активный азот весьма энергично взаимодействует с кислородом, водородом, парами , и некоторыми металлами.

Азот — один из самых распространённых элементов на Земле, причём основная его масса (около 4.10 15 т) сосредоточена в свободном состоянии в . Ежегодно при вулканической деятельности в атмосферу выделяется 2.10 6 т азота. Незначительная часть азота концентрируется в (среднее содержание в литосфере 1,9.10 -3 %). Природные соединения азота — хлористый аммоний и различные нитраты (селитры). Нитриды азота могут образовываться только при высоких температурах и давлениях, что, по-видимому, имело место на самых ранних стадиях развития Земли. Крупные скопления селитры встречаются только в условиях сухого пустынного климата ( , и др.). Небольшие количества связанного азота находятся в (1-2,5%) и (0,02-1,5%), а также в водах рек, морей и океанов. Азот накапливается в почвах (0,1 %) и живых организмах (0,3%). Азот входит в состав белковых молекул и многих естественных органических соединений.

Круговорот азота в природе

В природе осуществляется круговорот азота, который включает цикл молекулярного атмосферного азота в биосфере, цикл в атмосфере химически связанного азота, круговорот захоронённого с органическим веществом поверхностного азота в литосфере с возвратом его обратно в атмосферу. Азот для промышленности ранее добывался целиком из месторождений природных селитр, число которых в мире весьма ограничено. Особенно крупные залежи азота в виде азотнокислого натрия находятся в Чили; добыча селитры в отдельные годы составляла более 3 млн. т.

Азот - химический элемент, который известен каждому. Его обозначают буквой N. Он, можно сказать, основа неорганической химии, и поэтому его начинают изучать еще в восьмом классе. В этой статье мы подробно рассмотрим азот, а также его характеристики и свойства.

История открытия элемента

Такие соединения, как аммиак, селитра, азотная кислота, были известны и применялись на практике задолго до получения чистого азота в свободном состоянии.


Во время эксперимента, проведенного в 1772 году, Даниель Резерфорд сжигал фосфор и прочие вещества в колоколе из стекла. Он выяснил, что газ, остающийся после сгорания соединений, не поддерживает горения и дыхания, и назвал его «удушливым воздухом».

В 1787 году Антуан Лавуазье установил, что газы, входящие в состав обычного воздуха, - это простые химические элементы, и предложил название «Азот». Чуть позже (в 1784 г.) физик Генри Кавендиш доказал, что это вещество входит в состав селитры (группы нитратов). Отсюда происходит латинское название азота (от позднелатинского nitrum и греческого gennao), предложенное Ж. А. Шапталем в 1790 году.

К началу XIX века учеными были выяснены химическая инертность элемента в свободном состоянии и его исключительная роль в соединениях с другими веществами. С этого момента «связывание» азота воздуха стало важнейшей технической проблемой химии.

Физические свойства


Азот немного легче воздуха. Его плотность составляет 1,2506 кг/м³ (0 °С, 760 мм рт. ст.), температура плавления - -209,86 °С, кипения - -195,8 °С. Азот с трудом сжижается. Его критическая температура относительно низка (-147,1 °С), при этом критическое давление довольно высоко - 3,39 Мн/м². Плотность в жидком состоянии - 808 кг/м³. В воде этот элемент менее растворим, чем кислород: в 1 м³ (при 0 °С) Н₂О может раствориться 23,3 г N. Этот показатель выше при работе с некоторыми углеводородами.

При нагревании до невысоких температур этот элемент взаимодействует только с активными металлами. Например, с литием, кальцием, магнием. С большинством других веществ азот вступает в реакцию в присутствии катализаторов и/или при высокой температуре.

Хорошо изучены соединения N с О₂ (кислородом) N₂O₅, NO, N₂O₃, N₂O, NO₂. Из них при взаимодействии элементов (t - 4000 °С) образуется оксид NO. Далее в процессе охлаждения он окисляется до NO₂. Оксиды азота образуются в воздухе при прохождении атмосферных разрядов. Их можно получить действием ионизирующих излучений на смесь N с О₂.


При растворении в воде N₂O₃ и N₂O₅ соответственно получаются кислоты HNO₂ и HNO₂, образующие соли - нитраты и нитриты. Азот соединяется с водородом исключительно в присутствии катализаторов и при высокой температуре, образуя NH₃ (аммиак). Кроме того, известны и другие (они довольно многочисленны) соединения N с H₂, к примеру диимид HN = NH, гидразин H₂N-NH₂, октазон N₈H₁₄, кислота HN₃ и другие.

Стоит сказать, что большинство соединений водород + азот выделены исключительно в виде органических производных. Этот элемент не взаимодействует (непосредственно) с галогенами, поэтому все его галогениды получают только косвенным путем. К примеру, NF₃ образуется при взаимодействии аммиака с фтором.

Большинство галогенидов азота - малостойкие соединения, более устойчивы оксигалогениды: NOBr, NO₂F, NOF, NOCl, NO₂Cl. Непосредственного соединения N с серой также не происходит, N₄S₄ получается в процессе реакции аммиак + жидкая сера. Во время взаимодействия раскаленного кокса с N образуется циан (CN)₂. В процессе нагревания ацетилена С₂Н₂ с азотом до 1500 °С можно получить цианистый водород HCN. При взаимодействии N с металлами при относительно высоких температурах образуются нитриды (к примеру, Mg₃N₂).

При воздействии на обычный азот электроразрядов [при давлении 130–270 н/м² (соответствует 1–2 мм рт. cт.)] и при разложении Mg₃N₂, BN, TiNx и Ca₃N₂, а также при электроразрядах в воздухе может быть образован активный азот, обладающий повышенным запасом энергии. Он, в отличие от молекулярного, весьма энергично взаимодействует с водородом, парами серы, кислородом, некоторыми металлами и фосфором.

Азот входит в состав довольно многих важнейших органических соединений, в том числе - аминокислот, аминов, нитросоединений и прочих.

Получение азота

В лаборатории этот элемент может быть легко получен в процессе нагревания концентрированного раствора нитрита аммония (формула: NH₄NO₂ = N₂ + 2H₂O). Технический метод получения N основан на разделении заранее сжиженного воздуха, который в дальнейшем подвергается разгонке.

Область применения

Основная часть получаемого свободного азота используется при промышленном производстве аммиака, который потом в довольно больших количествах перерабатывается на удобрения, взрывчатые вещества и т. п.

Кроме прямого синтеза NH₃ из элементов, применяется разработанный в начале прошлого века цианамидный метод. Он основан на том, что при t = 1000 °С карбид кальция (образованный накаливанием смеси угля и извести в электропечи) реагирует со свободным азотом (формула: СаС₂ + N₂ = CaCN₂ + С). Полученный цианамид кальция под действием разогретого водяного пара разлагается на CaCO₃ и 2NH₃.

В свободном виде данный элемент применяется во многих отраслях промышленности: в качестве инертной среды при разнообразных металлургических и химических процессах, при перекачке горючих жидкостей, для заполнения пространства в ртутных термометрах и т. д. В жидком состоянии он используется в различных холодильных установках. Его транспортируют и хранят в стальных сосудах Дьюара, а сжатый газ - в баллонах.

Широко применяют и многие соединения азота. Их производство стало усиленно развиваться после Первой мировой войны и на данный момент достигло поистине огромных масштабов.


Это вещество является одним из основных биогенных элементов и входит в состав важнейших элементов живых клеток - нуклеиновых кислот и белков. Однако количество азота в живых организмах невелико (примерно 1–3 % на сухую массу). Имеющийся в атмосфере молекулярный материал усваивают лишь сине-зеленые водоросли и некоторые микроорганизмы.

Довольно большие запасы этого вещества сосредоточены в почве в виде различных минеральных (нитраты, аммонийные соли) и органических соединений (в составе нуклеиновых кислот, белков и продуктов их распада, включая еще не полностью разложившиеся остатки флоры и фауны).

Растения отлично усваивают азот из грунта в виде органических и неорганических соединений. В природных условиях большое значение имеют особые почвенные микроорганизмы (аммонификаторы), которые способны минерализировать органический N почвы до солей аммония.

Нитратный азот грунта образуется в процессе жизнедеятельности нитрифицирующих бактерий, открытых С. Виноградским в 1890 году. Они окисляют аммонийные соли и аммиак до нитратов. Часть усвояемого флорой и фауной вещества теряется из-за воздействия денитрифицирующих бактерий.

Микроорганизмы и растения отлично усваивают как нитратный, так и аммонийный N. Они активно превращают неорганический материал в различные органические соединения - аминокислоты и амиды (глутамин и аспарагин). Последние входят в состав многих белков микроорганизмов, растений и животных. Синтез аспарагина и глутамина путем амидирования (ферментативного) аспарагиновой и глутаминовой кислот осуществляется многими представителями флоры и фауны.

Производство аминокислот происходит при помощи восстановительного аминирования ряда кетокислот и альдегидокислот, возникающих путем ферментативного переаминирования, а также в результате окисления различных углеводов. Конечными продуктами усвоения аммиака (NH₃) растениями и микроорганизмами являются белки, которые входят в состав ядра клеток, протоплазмы, а также откладываются в виде так называемых запасных белков.

Человек и большинство животных могут синтезировать аминокислоты лишь в довольно ограниченной мере. Они не способны производить восемь незаменимых соединений (лизин, валин, фенилаланин, триптофан, изолейцин, лейцин, метионин, треонин), и потому для них главным источником азота являются потребляемые с пищей белки, то есть, в конечном счете, - собственные белки микроорганизмов и растений.

Азот химический элемент, атомный номер 7, атомная масса 14,0067. В воздухе свободный азот (в виде молекул N 2) составляет 78,09%. Азот немного легче воздуха, плотность 1,2506 кг/м 3 при нулевой температуре и нормальном давлении. Температура кипения -195,8°C. Критическая температура -147°C и критическое давление 3,39 МПа. Азот бесцветный, без запаха и вкуса, нетоксичен, невоспламеняемый, невзрывоопасен и не поддерживающий горение газ в газообразном состоянии при обычной температуре обладает высокой инертностью. Химическая формула - N. В обычных условиях молекула азота двухатомная - N 2 .

Производство азота в промышленных масштабах основано на получении его из воздуха (см. ).

До сих пор ведутся споры о том, кто был первооткрывателем азота. В 1772 г. шотландский врач Даниель Резерфорд (Daniel Rutherford) пропуская воздух через раскаленный уголь, а потом через водный раствор щелочи - получил газ, который он назвал «ядовитый газ». Оказалось, что горящая лучинка, внесенная в сосуд, наполненный азотом, гаснет, а живое существо в атмосфере этого газа быстро гибнет.

В тоже время, проводя подобный опыт, азот получили британский физик Генри Кавендшин (Henry Cavendish) назвав его «удушливый воздух», британский естествоиспытатель Джозеф Пристли (Joseph Priestley) дал ему имя «дефлогистированный воздух», шведский химик Карл Вильгельм Шееле (Carl Wilhelm Scheele) - «испорченный воздух».

Окончательное имя «азот» данному газу дал французский ученый Антуан Лоран Лавуазье (Antoine Laurent de Lavoisier). Слово «азот» греческого происхождения и означает «безжизненный» .

Возникает логичный вопрос: «Если азот образует , какой смысл его использовать для сварки нержавеющих сталей, в составе которых есть карбидообразующие элементы?»

Все дело в том, что даже сравнительно небольшое содержание азота увеличивает тепловую мощность дуги . Из-за этой особенности, азот чаще всего используют не для сварки, а для плазменной резки .

Азот относится к нетоксичным газам, но может действовать как простой асфиксант (удушающий газ). Удушье наступает тогда, когда уровень азота в воздухе сокращает содержание кислорода на 75% или ниже нормальной концентрации.

Выпускают азот по газообразным и жидким. Для сварки и плазменной резки применяют газообразный азот 1-го (99,6% азота) и 2-го (99,0% азота) сортов.

Хранят и транспортируют его в сжатом состоянии в стальных баллонах по . Баллоны окрашены в черный цвет и надписью желтыми буквами «АЗОТ» на верхней цилиндрической части.

Азот (англ. Nitrogen, франц. Azote, нем. Stickstoff) был открыт почти одновременно несколькими исследователями. Кавендиш получил азот из воздуха (1772), пропуская последний через раскаленный уголь, а затем через раствор щелочи для поглощения углекислоты. Кавендиш не дал специального названия новому газу, упоминая о нем как о мефитическом воздухе (лат. - mephitis - удушливое или вредное испарение земли). Официально открытие азота обычно приписывается Резерфорду, опубликовавшему в 1772 г. диссертацию "О фиксируемом воздухе, называемом иначе удушливым", где впервые описаны некоторые химические свойства азота. В эти же годы Шееле получил азот из атмосферного воздуха тем же путем, что и Кавендиш. Он назвал новый газ испорченным воздухом (Verdorbene Luft). Пристли (1775) назвал азот флогистированным воздухом (Air phlogisticated). Лавуазье в 1776-1777 гг. подробно исследовал состав атмосферного воздуха и установил, что 4/5 его объема состоят из удушливого газа (Air mofette).
Лавуазье предложил назвать элемент "азот" от отрицательной греческой приставки "а" и слова жизнь "зоэ", подчеркивая его неспособность поддерживать дыхание. В 1790 году для азота было предложено название "нитроген" (nitrogene - "образующий селитру"), что и стало в дальнейшем основой международного названия элемента (Nitrogenium) и символа азота - N.

Нахождение в природе, получение:

Азот в природе встречается главным образом в свободном состоянии. В воздухе объемная доля его составляет 78,09%, а массовая доля - 75,6%. Соединения азота в небольших количествах содержатся в почвах. Азот входит в состав белковых веществ и многих естественных органических соединений. Общее содержание азота в земной коре 0,01%.
В атмосфере азота содержится примерно 4 квадрильона (4·10 15) тонн, а в океанах - около 20 триллионов (20·10 12) тонн. Незначительная часть этого количества - около 100 миллиардов тонн - ежегодно связывается и включается в состав живых организмов. Из этих 100 миллиардов тонн связанного азота только 4 миллиарда тонн содержится в тканях растений и животных - все остальное накапливается в разлагающих микроорганизмах и в конце концов возвращается в атмосферу.
В технике азот получают из воздуха. Для получения азота воздух переводят в жидкое состояние, а затем испарением отделяют азот от менее летучего кислорода (t кип N 2 = -195,8°С, t кип O 2 = -183°С)
В лабораторных условиях чистый азот можно получить разлагая нитрит аммония или смешивая при нагревании растворы хлорида аммония и нитрита натрия:
NH 4 NO 2 N 2 + 2H 2 O; NH 4 Cl + NaNO 2 NaCl + N 2 + 2H 2 O.

Физические свойства:

Природный азот состоит из двух изотопов: 14 N и 15 N. При обычных условиях азот - газ без цвета, запаха и вкуса, немного легче воздуха, плохо растворяется в воде (в 1 л воды растворяется 15,4 мл азота, кислорода - 31 мл). При температуре -195,8°C азот переходит в бесцветную жидкость, а при температуре -210,0°C - в белое твердое вещество. В твердом состоянии существует в виде двух полиморфных модификаций: ниже -237,54°C устойчива форма с кубической решеткой, выше - с гексагональной.
Энергия связи атомов в молекуле азота очень велика и составляет 941,6 кДж/моль. Расстояние между центрами атомов в молекуле 0,110 нм. Молекула N 2 диамагнитна. Это свидетельствует о том, что связь между атомами азота тройная.
Плотность газообразного азота при 0°C 1,25046 г/дм 3

Химические свойства:

При обычных условиях азот - химически малоактивное вещество из-за прочной ковалентной связи. В обычных условиях реагирует только с литием, образуя нитрид: 6Li + N 2 = 2Li 3 N
С повышением температуры активность молекулярного азота увеличивается, при этом он может быть может быть и окислителем (с водородом, металлами), и восстановителем (с кислородом, фтором). При нагревании, повышенном давлении и в присутствии катализатора азот взаимодействует с водородом образуя аммиак: N 2 + 3H 2 = 2NH 3
С кислородом азот соединяется только в электрической дуге с образованием оксида азотa(II): N 2 + O 2 = 2NO
В электрическом разряде возможна и реакция со фтором: N 2 + 3F 2 = 2NF 3

Важнейшие соединения:

Азот способен образовывать химические соединения, находясь во всех степенях окисления от +5 до -3. Соединения в положительных степенях окисления азот образует с фтором и кислородом, причем в степенях окисления больше +3 азот может находиться только в соединениях с кислородом.
Аммиак , NH 3 - бесцветный газ с резким запахом, хорошо растворяется в воде ("нашатырный спирт"). Аммиак обладает основными свойствами, взаимодействует с водой, галогеноводородами, кислотами:
NH 3 + H 2 O NH 3 *H 2 O NH 4 + + OH - ; NH 3 + HCl = NH 4 Cl
Один из типичных лигандов в комплексных соединениях: Cu(OH) 2 + 4NH 3 = (OH) 2 (фиол., р-рим)
Восстановитель: 2NH 3 + 3CuO 3Cu + N 2 + 3H 2 O.
Гидразин - N 2 H 4 (пернитрид водорода), ...
Гидроксиламин - NH 2 OH, ...
Оксид азота(I) , N 2 O (закись азота, веселящий газ). ...
Оксид азота(II) , NO - бесцветный газ, не имеет запаха, в воде малорастворим, относится к несолеобразующим. В лаборатории получают при взаимодействии меди и разбавленной азотной кислоты:
3Cu + 8HNO 3 = 3Cu(NO 3) 2 + 2NO + 4H 2 O.
В промышленности получают каталитическим окислением аммиака при получении азотной кислоты:
4NH 3 + 5O 2 4NO + 6 H 2 O
Легко окисляется до оксида азота(IV): 2NO + O 2 = 2NO 2
Оксид азота(III) , ??? ...
...
Азотистая кислота , ??? ...
...
Нитриты , ??? ...
...
Оксид азота(IV) , NO 2 - ядовитый газ бурого цвета, имеет характерный запах, хорошо растворяется в воде, давая при этом две кислоты, азотистую и азотную: H 2 O + NO 2 = HNO 2 + HNO 3
При охлаждении переходит в бесцветный димер: 2NO 2 N 2 O 4
Оксид азота(V) , ??? ...
...
Азотная кислота , HNO 3 - бесцветная жидкость с резким запахом, t кип = 83°С. Сильная кислота, соли - нитраты. Один из сильнейших окислителей, что обусловлено наличием в составе кислотного остатка атома азота в высшей степени окисления N +5 . При взаимодействии азотной кислоты с металлами в качестве основного продукта выделяется не водород, а различные продукты восстановления нитрат-иона:
Cu + 4HNO 3 (конц) = Cu(NO 3) 2 + 2NO 2 + 2H 2 O;
4Mg + 10HNO 3 (оч.разб.) = 4Mg(NO 3) 2 + NH 4 NO 3 + 5H 2 O.
Нитраты , ??? ...
...

Применение:

Широко используется для создания инертной среды - наполнения электрических ламп накаливания и свободного пространства в ртутных термометрах, при перекачке жидкостей, в пищевой промышленности как упаковочный газ. Им азотируют поверхность стальных изделий, в поверхностном слое образуются нитриды железа, которые придают стали большую твердость. Жидкий азот часто используется для глубокого охлаждения различных веществ.
Важное значение азот имеет для жизни растений и животных, поскольку он входит в состав белковых веществ. В больших количествах азот применяется для получения аммиака. Соединения азота находят применение в производстве минеральных удобрений, взрывчатых веществ и во многих отраслях промышленности.

Л.В. Черкашина
ХФ ТюмГУ, гр. 542(I)

Источники:
- Г.П. Хомченко. Пособие по химии для поступающих в вузы. М., Новая волна, 2002.
- А.С. Егоров, Химия. Пособие-репетитор для поступающих в вузы. Ростов-на-Дону, Феникс, 2003.
- Открытие элементов и происхождение их названий/

Азот фиксируется в атмосфере и фотохимическим путем: поглотив квант света, молекула N 2 переходит в возбужденное, активированное состояние и становится способной соединяться с кислородом...

Из почвы соединения азота попадают в растения. Далее: «лошади кушают овес», а хищники - травоядных животных. По пищевой цепи идет круговорот вещества, в том числе и элемента № 7. При этом форма существования азота меняется, он входит в состав все более сложных и нередко весьма активных соединений. Но не только «грозорожденный» азот путешествует по пищевым цепям.

Еще в древности было замечено, что некоторые растения, в частности бобовые, способны повышать плодородие почвы.

«...Или, как сменится год, золотые засеивай злаки Там, где с поля собрал урожай, стручками шумящий, Или где вика росла мелкоплодная с горьким лупином...»

Вчитайтесь: это же травопольная система земледелия! Строки эти взяты из поэмы Вергилия, написанной около двух тысяч лет назад.

Пожалуй, первым, кто задумался над тем, почему бобовые дают прибавки урожая зерновых, был французский агрохимик Ж. Буссенго. В 1838 г. он установил, что бобовые обогащают почву азотом. Зерновые же (и еще многие другие растения) истощают землю, забирая, в частности, все тот же азот. Буссенго предположил, что листья бобовых усваивают азот из воздуха, но это было заблуждением. В то время немыслимо было предположить, что дело не в самих растениях, а в особых микроорганизмах, вызывающих образование клубеньков на их корнях. В симбиозе с бобовыми эти организмы и фиксируют азот атмосферы. Сейчас это прописная истина.

В наше время известно довольно много различных азот-фиксаторов: бактерии, актиномицеты, дрожжевые и плесневые грибки, синезеленые водоросли. И все они поставляют азот растениям. Но вот вопрос: каким образом без особых энергетических затрат расщепляют инертную молекулу N 2 микроорганизмы ? И почему одни из них обладают этой полезнейшей для всего живого способностью, а другие нет? Долгое время это оставалось загадкой. Тихий, без громов и молний механизм биологической фиксации элемента № 7 был раскрыт лишь недавно. Доказано, что путь элементного азота в живое вещество стал возможен благодаря восстановительным процессам, в ходе которых азот превращается в аммиак. Решающую роль при этом играет фермент нитрогеназа. Его центры, содержащие соединения железа и молибдена , активируют азот для «стыковки» с водородом, который предварительно активируется другим ферментом. Так из инертного азота получается весьма активный аммиак - первый стабильный продукт биологической азотфиксации.

Вот ведь как получается! Сначала процессы жизнедеятельности перевели аммиак первичной атмосферы в азот, а затем жизнь снова превратила азот в аммиак. Стоило ли природе на этом «ломать копья»? Безусловно, потому что именно так и возник круговорот элемента № 7.